A195849 Column 5 of array A195825. Also column 1 of triangle A195839. Also 1 together with the row sums of triangle A195839.
1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 14, 16, 21, 27, 32, 34, 36, 38, 44, 54, 67, 77, 84, 88, 95, 107, 128, 152, 174, 188, 200, 215, 242, 281, 329, 370, 402, 428, 462, 513, 589, 674, 754, 816, 873, 940, 1041, 1176, 1333, 1477, 1600, 1710, 1845
Offset: 0
Keywords
Links
- Ludovic Schwob, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
A118277 := proc(n) 7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8) ; end proc: A195839 := proc(n, k) option remember; local ks, a, j ; if A118277(k) > n then 0 ; elif n <= 5 then return 1; elif k = 1 then a := 0 ; for j from 1 do if A118277(j) <= n-1 then a := a+procname(n-1, j) ; else break; end if; end do; return a; else ks := A118277(k) ; (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ; end if; end proc: A195849 := proc(n) A195839(n+1,1) ; end proc: seq(A195849(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
-
Mathematica
m = 61; Product[1/((1 - x^(7k))(1 - x^(7k - 1))(1 - x^(7k - 6))), {k, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Apr 13 2020, after Ilya Gutkovskiy *)
Formula
G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-1))*(1 - x^(7*k-6))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*sin(Pi/7)*n). - Vaclav Kotesovec, Aug 14 2017
Comments