cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195851 Column 7 of array A195825. Also column 1 of triangle A195841. Also 1 together with the row sums of triangle A195841.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 87, 89, 95, 107, 128, 152, 173, 185, 192, 196, 203, 216, 242, 281, 328, 367, 394, 409, 421, 436, 465
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4], [13, 13, 13, 13], [35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Maple
    A195160 := proc(n)
            (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 ;
    end proc:
    A195841 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A195160(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A195160(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A195160(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195851 := proc(n)
            A195841(n+1,1) ;
    end proc:
    seq(A195851(n), n=0..60) ; # R. J. Mathar, Oct 08 2011

Formula

G.f.: Product_{k>=1} 1/((1 - x^(9*k))*(1 - x^(9*k-1))*(1 - x^(9*k-8))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n)/3) / (8*sin(Pi/9)*n). - Vaclav Kotesovec, Aug 14 2017