A195851 Column 7 of array A195825. Also column 1 of triangle A195841. Also 1 together with the row sums of triangle A195841.
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 87, 89, 95, 107, 128, 152, 173, 185, 192, 196, 203, 216, 242, 281, 328, 367, 394, 409, 421, 436, 465
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
A195160 := proc(n) (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 ; end proc: A195841 := proc(n, k) option remember; local ks, a, j ; if A195160(k) > n then 0 ; elif n <= 5 then return 1; elif k = 1 then a := 0 ; for j from 1 do if A195160(j) <= n-1 then a := a+procname(n-1, j) ; else break; end if; end do; return a; else ks := A195160(k) ; (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ; end if; end proc: A195851 := proc(n) A195841(n+1,1) ; end proc: seq(A195851(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
Formula
G.f.: Product_{k>=1} 1/((1 - x^(9*k))*(1 - x^(9*k-1))*(1 - x^(9*k-8))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n)/3) / (8*sin(Pi/9)*n). - Vaclav Kotesovec, Aug 14 2017
Comments