cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195861 Expansion of (psi(x) / phi(x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -5, 20, -65, 185, -481, 1165, -2665, 5820, -12220, 24802, -48880, 93865, -176125, 323685, -583798, 1035060, -1806600, 3108085, -5276305, 8846884, -14663645, 24044285, -39029560, 62755345, -100004806, 158022900, -247710570, 385366265
Offset: 0

Views

Author

Michael Somos, Sep 24 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 5*x + 20*x^2 - 65*x^3 + 185*x^4 - 481*x^5 + 1165*x^6 - 2665*x^7 + ...
G.f. = q^5 - 5*q^13 + 20*q^21 - 65*q^29 + 185*q^37 - 481*q^45 + 1165*q^53 - 2665*q^61 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

(psi(x) / phi(x))^b: A083365 (b=1), A079006 (b=2), A187053 (b=3), A001938 (b=4), this sequence (b=5).

Programs

  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16)^(5/8), {q, 0, n + 5/8}]];
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^5, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2, x^2] / QPochhammer[ -x, x^2])^5, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^2)^5, n))};

Formula

Expansion of q^(-5/8) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^5 in powers of q.
Euler transform of period 4 sequence [-5, 10, -5, 0, ...].
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)))^5.
a(n) = (-1)^n * A001939(n). Convolution inverse of A029842.
a(n) ~ (-1)^n * 5^(1/4) * exp(sqrt(5*n/2)*Pi) / (64 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 27 2015