cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195907 Decimal expansion of Sum_{n = -oo..oo} exp(-n^2).

Original entry on oeis.org

1, 7, 7, 2, 6, 3, 7, 2, 0, 4, 8, 2, 6, 6, 5, 2, 1, 5, 3, 0, 3, 1, 2, 5, 0, 5, 5, 1, 1, 5, 7, 8, 5, 8, 4, 8, 1, 3, 4, 3, 3, 8, 6, 0, 4, 5, 3, 7, 2, 2, 4, 6, 0, 5, 3, 8, 3, 1, 5, 9, 0, 5, 1, 0, 8, 7, 9, 9, 6, 8, 6, 8, 0, 8, 3, 9, 6, 3, 4, 0, 1, 2, 5, 4, 0, 3, 3, 8, 7, 1, 7, 4, 2, 4, 9, 6, 0, 0, 2, 9, 6, 4, 0, 5, 1, 9, 0, 7, 1, 3, 4, 7, 3, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2011

Keywords

Comments

A Riemann sum approximation to Integral_{-oo..oo} exp(-x^2) dx = sqrt(Pi).

Examples

			1.77263720482665215303125055115785848134338604537224605383159051...
For comparison, sqrt(Pi) = 1.7724538509055160272981674833411451827975494561223871282138... (A002161).
		

References

  • Mentioned by N. D. Elkies in a lecture on the Poisson summation formula in Nashville TN in May 2010.

Crossrefs

Programs

  • Mathematica
    N[Sum[Exp[-n^2], {n, -Infinity, Infinity}], 200]
    RealDigits[ N[ EllipticTheta[3, 0, 1/E], 115]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    1 + 2*suminf(n=1,exp(-n^2)) \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    (eta(I/Pi))^5 / (eta(I/(2*Pi))^2 * eta(2*I/Pi)^2) \\ Jianing Song, Oct 13 2021

Formula

Equals Jacobi theta_{3}(0,exp(-1)). - Jianing Song, Oct 13 2021
Equals eta(i/Pi)^5 / (eta(i/(2*Pi))*eta(2*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021
Equals Product_{k>=1} tanh((k*(1 + i*Pi))/2), i=sqrt(-1). - Antonio Graciá Llorente, May 13 2024