cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196017 T(n,k) = Number of n X k 0..4 arrays with each element equal to the number of its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 7, 3, 1, 1, 5, 13, 25, 13, 5, 1, 1, 9, 16, 27, 27, 16, 9, 1, 1, 17, 32, 91, 106, 91, 32, 17, 1, 1, 31, 65, 231, 316, 316, 231, 65, 31, 1, 1, 57, 125, 455, 835, 708, 835, 455, 125, 57, 1, 1, 105, 211, 1135, 2350, 3572, 3572, 2350
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2011

Keywords

Examples

			Table starts:
.1..1...1....1.....1......1.......1........1.........1..........1...........1
.1..1...1....1.....3......5.......9.......17........31.........57.........105
.1..1...2....7....13.....16......32.......65.......125........211.........390
.1..1...7...25....27.....91.....231......455......1135.......2693........6041
.1..3..13...27...106....316.....835.....2350......7232......21846.......63985
.1..5..16...91...316....708....3572....14607.....54710.....196832......782926
.1..9..32..231...835...3572...22711...100094....517009....2740712....14291156
.1.17..65..455..2350..14607..100094...670449...4760391...32900243...226381615
.1.31.125.1135..7232..54710..517009..4760391..44864449..411748723..3838635775
.1.57.211.2693.21846.196832.2740712.32900243.411748723.5122273171.64922269000
Some solutions for n=6 and k=4:
..2..2..2..0....2..2..3..2....2..3..3..2....2..2..3..2....0..2..2..2
..2..0..3..2....2..0..3..3....3..4..3..3....2..0..3..3....2..3..0..2
..3..3..3..3....3..3..3..3....3..3..0..2....3..3..4..3....3..4..3..3
..3..2..0..2....3..2..0..2....3..4..3..3....3..4..4..3....3..3..4..3
..2..0..2..2....2..0..2..2....3..4..4..3....3..4..4..3....2..0..3..3
..2..2..2..0....2..2..2..0....2..3..3..2....2..3..3..2....2..2..3..2
		

Crossrefs

The n-th term of the column 2 is A000213(n-2).