cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196018 G.f. satisfies: A(x) = 1/(1-x) - 1/(1-x*A(x)) + 1/(1-x*A(x)^2).

Original entry on oeis.org

1, 1, 2, 6, 23, 98, 440, 2044, 9742, 47384, 234289, 1174214, 5951877, 30459550, 157168265, 816777857, 4271248777, 22459464722, 118678530165, 629867928597, 3356148860975, 17946684482409, 96280344449069, 518058601390577, 2795121781871727, 15118502434518352
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + 98*x^5 + 440*x^6 +...
Related series begin:
1/(1-x*A(x)) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 53*x^5 + 211*x^6 +...
1/(1-x*A(x)^2) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 150*x^5 + 650*x^6 +...
		

Programs

  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));for(i=1,n,A=1/(1-X)-1/(1-X*A)+1/(1-X*A^2));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 - x*(A(x) - A(x)^2 - A(x)^3) + x^2*(A(x) - 2*A(x)^2 - A(x)^4) + x^3*A(x)^4.
a(n) ~ sqrt((1/(-1 + r)^2 - s/(-1 + r*s)^2 + s^2/(-1 + r*s^2)^2) / (Pi*(1/(-1 + r*s^2)^2 + r*(1/(-1 + r*s)^3 - (4*s^2) / (-1 + r*s^2)^3)))) / (2*n^(3/2)*r^n), where r = 0.1741099691155951761402154753241071226265020289369... and s = 1.469614426933947254586622522985062658500679266649... are roots of the system of equations 1/(1-r) + 1/(-1+r*s) + 1/(1-r*s^2) = s, 2*r*s / (-1+r*s^2)^2 = 1 + r/(-1+r*s)^2. - Vaclav Kotesovec, Nov 18 2017