A196047 Path length of the rooted tree with Matula-Goebel number n.
0, 1, 3, 2, 6, 4, 5, 3, 6, 7, 10, 5, 8, 6, 9, 4, 9, 7, 7, 8, 8, 11, 11, 6, 12, 9, 9, 7, 12, 10, 15, 5, 13, 10, 11, 8, 10, 8, 11, 9, 13, 9, 11, 12, 12, 12, 15, 7, 10, 13, 12, 10, 9, 10, 16, 8, 10, 13, 14, 11, 13, 16, 11, 6, 14, 14, 12, 11, 14, 12, 14, 9, 14, 11, 15, 9, 15, 12, 17, 10, 12, 14, 17, 10, 15, 12, 15, 13, 12, 13, 13, 13, 18, 16, 13, 8, 19, 11, 16, 14
Offset: 1
Keywords
Examples
a(7) = 5 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y (0+1+2+2 = 5). a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a196047 n = genericIndex a196047_list (n - 1) a196047_list = 0 : g 2 where g x = y : g (x + 1) where y = if t > 0 then a196047 t + a061775 t else a196047 r + a196047 s where t = a049084 x; r = a020639 x; s = x `div` r -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local r, s, N: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: N := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then a(pi(n))+N(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 100);
-
Mathematica
a[m_] := Module[{r, s, Nn}, r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; Nn[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1+Nn[PrimePi[n]], True, Nn[r[n]]+Nn[s[n]]-1]; Which[m == 1, 0, PrimeOmega[m] == 1, a[PrimePi[m]]+Nn[PrimePi[m]], True, a[r[m]]+a[s[m]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 03 2023, after Maple code *)
-
PARI
NPl(n) = { if(n==1, return([1,0]), my(f=factor(n)~, v=Mat(vector(#f,k,NPl(primepi(f[1,k]))~)) ); return( [ 1+sum(k=1,#f,v[1,k]*f[2,k]) , sum(k=1,#f,(v[1,k]+v[2,k])*f[2,k]) ] ) ) }; A196047(n) = NPl(n)[2]; \\ François Marques, Apr 02 2021
Formula
a(1)=0; if n=prime(t) then a(n)=a(t)+N(t), where N(t) is the number of nodes of the rooted tree with Matula number t; if n=r*s (r,s>=2), then a(n)=a(r)+a(s). The Maple program is based on this recursive formula.
Comments