A196048 External path length of the rooted tree with Matula-Goebel number n.
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 5, 4, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 7, 7, 6, 7, 7, 7, 6, 7, 7, 8, 6, 7, 7, 7, 6, 8, 7, 8, 7, 8, 7, 7, 7, 8, 7, 8, 7, 8, 6, 8, 6, 8, 7, 9, 8, 8, 8, 8, 7, 9, 8, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 7, 9, 8, 9, 8, 7, 8, 9, 7, 8, 9, 8, 8, 9, 9, 9, 8, 9, 9, 10, 8, 8, 8
Offset: 1
Keywords
Examples
a(7)=4 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y (2+2=4).
Links
- François Marques, Table of n, a(n) for n = 1..10000
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a196048 n = genericIndex a196048_list (n - 1) a196048_list = 0 : 1 : g 3 where g x = y : g (x + 1) where y = if t > 0 then a196048 t + a109129 t else a196048 r + a196048 s where t = a049084 x; r = a020639 x; s = x `div` r -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local r, s, LV: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: LV := proc (n) if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then LV(pi(n)) else LV(r(n))+LV(s(n)) end if end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then a(pi(n))+LV(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
-
Mathematica
a[m_] := Module[{r, s, LV}, r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; LV [n_] := Which[ n == 1, 0, n == 2, 1, PrimeOmega[n] == 1, LV[PrimePi[n]], True, LV[r[n]] + LV[s[n]]]; Which[ m == 1, 0, m == 2, 1, PrimeOmega[m] == 1, a[PrimePi[m]] + LV[PrimePi[m]], True, a[r[m]] + a[s[m]]]]; Table[a[n], {n, 1, 110}] (* Jean-François Alcover, May 04 2023, after Maple code *)
-
PARI
LEpl(n) = { if(n==1, return([1,0]), my(f=factor(n)~, l, e, le); foreach(f,p, le=LEpl(primepi(p[1])); l+=le[1]*p[2]; e+=(le[1]+le[2])*p[2]; ); return([l,e]) ) }; A196048(n) = LEpl(n)[2]; \\ François Marques, Mar 14 2021
Formula
a(1)=0; a(2)=1; if n=prime(t) (the t-th prime; t>1) then a(n)=a(t)+LV(t), where LV(t) is the number of leaves in the rooted tree with Matula number t; if n=rs (r,s>=2), then a(n)=a(r)+a(s). The Maple program is based on this recursive formula.
a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
Extensions
Offset fixed by Reinhard Zumkeller, Sep 03 2013
Comments