cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196056 Triangle read by rows: T(n,k) is the number of nodes at level k>=1 of the rooted tree having Matula-Goebel number n (n>=2).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 2, 2, 2, 1, 4, 1, 1, 2, 3, 2, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 1, 3, 3, 3, 2, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 1, 3, 1, 2, 3, 2, 3, 1, 4, 1, 1, 1, 1, 2, 1, 3, 3, 1, 2, 2, 3, 1, 1, 1, 3, 3, 1
Offset: 2

Views

Author

Emeric Deutsch, Sep 30 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Number of entries in row n is A109082(n) (n=2,3,...).
The generating polynomial of row n is the partial Wiener polynomial of the rooted tree having Matula-Goebel number n with respect to the root (for partial Wiener polynomial see the Doslic reference, p. 68).

Examples

			Row n=7 is [1,2] because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 1 node at level 1 and 2 nodes at level 2.
Row n=2^m is [m] because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
Triangle starts:
  1;
  1,1;
  2,
  1,1,1;
  2,1;
  1,2;
  3;
  2,2;
  2,1,1;
  ...
		

Crossrefs

Cf. A109082.

Programs

  • Maple
    with(numtheory): R := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow; n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: for n from 2 to 45 do seq(coeff(R(n), x, k), k = 1 .. degree(R(n))) end do;
    with(numtheory): R := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: R(987654321);
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    R[n_] := Which[ n == 1, 0, PrimeOmega[n] == 1, x*R[PrimePi[n]] + x, True, R[r[n]] + R[s[n]]];
    T[n_] := Rest@CoefficientList[R[n], x];
    Table[T[n], {n, 2, 45}] // Flatten (* Jean-François Alcover, Jun 21 2024, after Maple code *)
  • PARI
    P(n)={ if(n==1, return(0),
        my(f=factor(n)~, v=vector(#f,k,P(primepi(f[1,k]))) );
        return( 'x*sum(k=1,#f,(v[k]+1)*f[2,k]) ) )
    };
    A196056_Row(n) = Vecrev(P(n))[^1]; \\ François Marques, Apr 03 2021

Formula

We give the recursive construction of the row generating polynomials R(n)=R(n,x). R(1)=0; if n = pprime(t) (=the t-th prime), then R(n)=x*R(t) + x; if n=r*s (r,s>=2), then R(n)=R(r)+R(s) (2nd Maple program yields R(n)).

Extensions

Keyword tabf added by Michel Marcus, Apr 09 2013