A196068 Visitation length of the rooted tree with Matula-Goebel number n.
1, 3, 6, 5, 10, 8, 9, 7, 11, 12, 15, 10, 13, 11, 15, 9, 14, 13, 12, 14, 14, 17, 17, 12, 19, 15, 16, 13, 18, 17, 21, 11, 20, 16, 18, 15, 16, 14, 18, 16, 19, 16, 17, 19, 20, 19, 22, 14, 17, 21, 19, 17, 15, 18, 24, 15, 17, 20, 20, 19, 20, 23, 19, 13, 22, 22, 18, 18, 22, 20, 21, 17, 21, 18, 24, 16, 23, 20, 24, 18
Offset: 1
Keywords
Examples
a(7)=9 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y (1+2+2+4=9). a(2^m) = 2m+1 because the rooted tree with Matula-Goebel number 2^m is a star with m edges (m+(m+1)=2m+1).
References
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- M. Keijzer and J. Foster, Crossover bias in genetic programming, Lecture Notes in Computer Sciences, 4445, 2007, 33-44.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a196068 n = genericIndex a196068_list (n - 1) a196068_list = 1 : g 2 where g x = y : g (x + 1) where y | t > 0 = a196068 t + a061775 t + 1 | otherwise = a196068 r + a196068 s - 1 where t = a049084 x; r = a020639 x; s = x `div` r -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local r, s, N: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: N := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then a(pi(n))+N(pi(n))+1 else a(r(n))+a(s(n))-1 end if end proc: seq(a(n), n = 1 .. 80);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; nn[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + nn[PrimePi[n]], True, nn[r[n]] + nn[s[n]] - 1]; a[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, a[PrimePi[n]] + nn[PrimePi[n]] + 1, True, a[r[n]] + a[s[n]] - 1]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 25 2024, after Maple code *)
Formula
a(1)=1; if n=prime(t) (= the t-th prime) then a(n)=a(t)+N(t)+1, where N(t) is the number of nodes of the rooted tree with Matula number t; if n=r*s (r,s>=2), then a(n)=a(r)+a(s)-1. The Maple program is based on this recursive formula.
Comments