A196118 Partial sums of A004111.
0, 1, 2, 3, 5, 8, 14, 26, 51, 103, 216, 463, 1011, 2237, 5007, 11306, 25732, 58941, 135792, 314410, 731258, 1707554, 4001778, 9409162, 22189556, 52472676, 124397323, 295594279, 703904947, 1679567427, 4015010504, 9614519152, 23060649590, 55395487476
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add( b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1)) end: a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..50); # Alois P. Heinz, Feb 24 2015
-
Mathematica
b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d+1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := a[n] = b[n] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
Formula
a(n) ~ c * A246169^n / n^(3/2), where c = 0.601433809400132103408618319570970615307211984303335915895942080355184647... - Vaclav Kotesovec, Dec 26 2020
Comments