cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196161 Binomial transform of {A004111(n), n >= 1}.

Original entry on oeis.org

1, 2, 4, 9, 22, 57, 155, 439, 1283, 3837, 11675, 36013, 112348, 353836, 1123431, 3591616, 11551046, 37343096, 121280307, 395496997, 1294457887, 4250811199, 14001176036, 46243806379, 153123238870, 508207709138, 1690355937970, 5633580018286, 18810483711103, 62917378114528, 210788885780702, 707273100413094
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> add(b(k+1)*binomial(n-1, k), k=0..n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, Sum[b[n - k]*Sum[ b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := Sum[b[k+1]*Binomial[n-1, k], {k, 0, n-1}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 12 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1 + A246169 = 3.51754035263200389079535459..., c = 0.428531715886712592684516703... - Vaclav Kotesovec, Oct 30 2017