A196192
G.f. satisfies A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^2).
Original entry on oeis.org
1, 1, 4, 16, 77, 389, 2128, 12019, 70185, 418788, 2544938, 15687842, 97871618, 616729500, 3919686231, 25096525793, 161723865118, 1048085548563, 6826585371618, 44664343473618, 293407529533947, 1934484748893113, 12796683165889635, 84906535878961845
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 77*x^4 + 389*x^5 + 2128*x^6 +...
where
A(x) = 1/((1 - x*A(x)^2) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^2) *...).
-
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*subst(A,x,x^k+x*O(x^n))^2))); polcoeff(A, n)}
A205774
G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^3).
Original entry on oeis.org
1, 1, 5, 27, 177, 1245, 9399, 73659, 595510, 4923724, 41451675, 354071010, 3061018302, 26732084764, 235476740731, 2089770720125, 18666863392846, 167697751329817, 1514206777182411, 13734387733516323, 125083419013852945, 1143367086845429280
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 177*x^4 + 1245*x^5 +...
where
A(x) = 1/((1 - x*A(x)^3) * (1 - x^2*A(x^2)^3) * (1 - x^3*A(x^3)^3) *...).
A205775
G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^n).
Original entry on oeis.org
1, 1, 3, 8, 26, 79, 276, 936, 3376, 12259, 45648, 171739, 655664, 2524835, 9813259, 38410167, 151332137, 599541153, 2387199083, 9547195445, 38335338712, 154484001619, 624579964260, 2532713370789, 10298393401623, 41979975505800, 171522040764060
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 79*x^5 + 276*x^6 + 936*x^7 +...
where
A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^3) *...).
Showing 1-3 of 3 results.