cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A196192 G.f. satisfies A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^2).

Original entry on oeis.org

1, 1, 4, 16, 77, 389, 2128, 12019, 70185, 418788, 2544938, 15687842, 97871618, 616729500, 3919686231, 25096525793, 161723865118, 1048085548563, 6826585371618, 44664343473618, 293407529533947, 1934484748893113, 12796683165889635, 84906535878961845
Offset: 0

Views

Author

Paul D. Hanna, Sep 28 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 77*x^4 + 389*x^5 + 2128*x^6 +...
where
A(x) = 1/((1 - x*A(x)^2) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^2) *...).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*subst(A,x,x^k+x*O(x^n))^2))); polcoeff(A, n)}

A205774 G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^3).

Original entry on oeis.org

1, 1, 5, 27, 177, 1245, 9399, 73659, 595510, 4923724, 41451675, 354071010, 3061018302, 26732084764, 235476740731, 2089770720125, 18666863392846, 167697751329817, 1514206777182411, 13734387733516323, 125083419013852945, 1143367086845429280
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			 G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 177*x^4 + 1245*x^5 +...
where
A(x) = 1/((1 - x*A(x)^3) * (1 - x^2*A(x^2)^3) * (1 - x^3*A(x^3)^3) *...).
		

Crossrefs

A205775 G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^n).

Original entry on oeis.org

1, 1, 3, 8, 26, 79, 276, 936, 3376, 12259, 45648, 171739, 655664, 2524835, 9813259, 38410167, 151332137, 599541153, 2387199083, 9547195445, 38335338712, 154484001619, 624579964260, 2532713370789, 10298393401623, 41979975505800, 171522040764060
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			 G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 79*x^5 + 276*x^6 + 936*x^7 +...
where
A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^3) *...).
		

Crossrefs

Showing 1-3 of 3 results.