cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A196195 G.f. satisfies: A(x) = Sum_{n>=0} x^n*(A(x)^n + A(-x)^n)/2.

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 24, 70, 163, 496, 1199, 3746, 9291, 29572, 74712, 241078, 617612, 2013979, 5215990, 17151362, 44809646, 148345585, 390352720, 1299558642, 3440133086, 11507046875, 30615708092, 102821083832, 274759034372, 925976586616, 2483758221924
Offset: 0

Views

Author

Paul D. Hanna, Sep 29 2011

Keywords

Comments

What is the limit a(n)^(1/n)?
Limit is equal to 3.16191277... - Vaclav Kotesovec, Jan 05 2023
Let 1/r equal the above limit, then A(r) = 1.9136996... and A(-r) = 0.7188624... - Paul D. Hanna, Jan 08 2023

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 24*x^6 + 70*x^7 + ...
where
A(x) = 1 + x*(A(x) + A(-x))/2 + x^2*(A(x)^2 + A(-x)^2)/2 + x^3*(A(x)^3 + A(-x)^3)/2 + x^4*(A(x)^4 + A(-x)^4)/2 + x^5*(A(x)^5 + A(-x)^5)/2 + ...
Related expansions begin:
(A(x) + A(-x))/2 = 1 + x^2 + 4*x^4 + 24*x^6 + 163*x^8 + 1199*x^10 + ...
(A(x)^2 + A(-x)^2)/2 = 1 + 3*x^2 + 13*x^4 + 82*x^6 + 574*x^8 + ...
(A(x)^3 + A(-x)^3)/2 = 1 + 6*x^2 + 30*x^4 + 199*x^6 + 1443*x^8 + ...
(A(x)^4 + A(-x)^4)/2 = 1 + 10*x^2 + 59*x^4 + 414*x^6 + 3121*x^8 + ...
(A(x)^5 + A(-x)^5)/2 = 1 + 15*x^2 + 105*x^4 + 785*x^6 + 6170*x^8 + ...
(A(x)^6 + A(-x)^6)/2 = 1 + 21*x^2 + 174*x^4 + 1395*x^6 + 11460*x^8 + ...
...
G.f. A = A(x) is a solution to the 5th degree polynomial equation:
0 = (x - 3) + (7 - 4*x)*A - (4 - 5*x^2)*A^2 + 4*(1 - 3*x)*x*A^3 + 4*(1 + x)*x^2*A^4 - (4 - x)*x^3*A^5.
		

Crossrefs

Cf. A196196.

Programs

  • PARI
    {a(n)=local(A=1+x); for(k=1, n, A=(1/(1-x*A+x*O(x^n))+1/(1-x*subst(A,x,-x+x*O(x^n))))/2); polcoeff(A, n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*(A^j+subst(A, x,-x)^j)/2)); polcoeff(A, n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = ( 1/(1 - x*A(x)) + 1/(1 - x*A(-x)) )/2.
(2) 0 = (x - 3) + (-4*x + 7)*A(x) + (5*x^2 - 4)*A(x)^2 + (-12*x^2 + 4*x)*A(x)^3 + (4*x^3 + 4*x^2)*A(x)^4 + (x^4 - 4*x^3)*A(x)^5.
(3) 0 = A^5*x^4 + 4*(1 - A)*A^4*x^3 + (5 - 12*A + 4*A^2)*A^2*x^2 + (1 - 4*A + 4*A^3)*x - (3 - 7*A + 4*A^2), where A = A(x). - Paul D. Hanna, Jan 08 2023
(4) x*A(-x) = (2 - (2+x)*A(x) + 2*x*A(x)^2) / (1 - 2*A(x) + 2*x*A(x)^2). - Paul D. Hanna, Jan 08 2023

A210525 G.f.: A(x) = Sum_{n>=0} x^n * A(n*x) * A(-n*x).

Original entry on oeis.org

1, 1, 1, 2, 5, 17, 129, 823, 16549, 203762, 9057969, 229117047, 20251050469, 1099941609906, 182745344595201, 21826976698036317, 6625997170286326085, 1760792727174811634066, 963263479575497024110193, 572732462137043288595101258, 560867188756075075604736149189
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 17*x^5 + 129*x^6 + 823*x^7 +...
such that
A(x) = 1 + x*A(x)*A(-x) + x^2*A(2*x)*A(-2*x) + x^3*A(3*x)*A(-3*x) + x^4*A(4*x)*A(-4*x) + x^5*A(5*x)*A(-5*x) +...
where
A(x)*A(-x) = 1 + x^2 + 7*x^4 + 230*x^6 + 31667*x^8 + 17739221*x^10 + 40061321883*x^12 + 363330478847435*x^14 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(k=0, n, x^k*subst(A,x,k*x +x*O(x^n))*subst(A,x,-k*x +x*O(x^n)))  );polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
Showing 1-2 of 2 results.