cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196201 T(n,k) counts ordered complete ternary trees with 2*n-1 leaves having k internal vertices colored black, the remaining n-1-k internal vertices colored white, and such that each vertex and its rightmost child have different colors.

Original entry on oeis.org

1, 1, 1, 2, 6, 2, 5, 28, 28, 5, 14, 120, 230, 120, 14, 27, 326, 985, 985, 326, 27, 56, 877, 3701, 5848, 3701, 877, 56, 116, 2212, 12096, 26988, 26988, 12096, 2212, 116, 221, 4808, 31740, 91402, 128738, 91402, 31740, 4808, 221
Offset: 1

Views

Author

Peter Bala, Sep 29 2011

Keywords

Comments

Compare with Examples 1.6.7 and 1.6.9 in [Drake]. This triangle is a refinement of A027307. Compare with A175124.

Examples

			Triangle begins
n\k.|....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1.|....1
..2.|....1....1
..3.|....2....6....2
..4.|....5...28...28....5
..5.|...14..120..230..120...14
..6.|...27..326..985..985..326...27
..
Row 3: 2*b^2+6*b*w+2w^2. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf nodes shown as o.
..Weights....b^2.......................w^2
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....b..o..o.....o..b..o.......w..o..o.....o..w..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
..Weights....b*w..
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....w..o..o.....o..w..o.......b..o..o.....o..b..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
........b...........w..........
......./|\........./|\.........
....../.|.\......./.|.\........
.....o..o..w.....o..o..b.......
........../|\........./|\......
........./.|.\......./.|.\.....
........o..o..o.....o..o..o....
...............................
		

Crossrefs

Cf. A027307 (row sums), A175124.

Formula

O.g.f.: compositional inverse of x-b*x^3/(1+b*x^2)-w*x^3/(1+w*x^2) = x +(b+w)*x^3 + (2*b^2+6*b*w+2*w^2)*x^5 + ....