A196201 T(n,k) counts ordered complete ternary trees with 2*n-1 leaves having k internal vertices colored black, the remaining n-1-k internal vertices colored white, and such that each vertex and its rightmost child have different colors.
1, 1, 1, 2, 6, 2, 5, 28, 28, 5, 14, 120, 230, 120, 14, 27, 326, 985, 985, 326, 27, 56, 877, 3701, 5848, 3701, 877, 56, 116, 2212, 12096, 26988, 26988, 12096, 2212, 116, 221, 4808, 31740, 91402, 128738, 91402, 31740, 4808, 221
Offset: 1
Examples
Triangle begins n\k.|....1....2....3....4....5....6 = = = = = = = = = = = = = = = = = = ..1.|....1 ..2.|....1....1 ..3.|....2....6....2 ..4.|....5...28...28....5 ..5.|...14..120..230..120...14 ..6.|...27..326..985..985..326...27 .. Row 3: 2*b^2+6*b*w+2w^2. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf nodes shown as o. ..Weights....b^2.......................w^2 ........b...........b.............w...........w..... ......./|\........./|\.........../|\........./|\.... ....../.|.\......./.|.\........./.|.\......./.|.\... .....b..o..o.....o..b..o.......w..o..o.....o..w..o.. ..../|\............/|\......../|\............/|\.... .../.|.\........../.|.\....../.|.\........../.|.\... ..o..o..o........o..o..o....o..o..o........o..o..o.. .................................................... ..Weights....b*w.. ........b...........b.............w...........w..... ......./|\........./|\.........../|\........./|\.... ....../.|.\......./.|.\........./.|.\......./.|.\... .....w..o..o.....o..w..o.......b..o..o.....o..b..o.. ..../|\............/|\......../|\............/|\.... .../.|.\........../.|.\....../.|.\........../.|.\... ..o..o..o........o..o..o....o..o..o........o..o..o.. .................................................... ........b...........w.......... ......./|\........./|\......... ....../.|.\......./.|.\........ .....o..o..w.....o..o..b....... ........../|\........./|\...... ........./.|.\......./.|.\..... ........o..o..o.....o..o..o.... ...............................
Links
- B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
Formula
O.g.f.: compositional inverse of x-b*x^3/(1+b*x^2)-w*x^3/(1+w*x^2) = x +(b+w)*x^3 + (2*b^2+6*b*w+2*w^2)*x^5 + ....
Comments