A196223 Natural numbers n such that Sum_{k = 1..pi(n)-1} p(k) == p(pi(n)) mod n, where p(k) denotes the k-th prime and pi(n) is the number of primes strictly less than n.
6, 7, 15, 27, 41, 55, 172, 561, 1334, 6571, 11490, 429705, 2173016, 4417701, 9063353, 9531624, 40411847, 64538709, 83537963, 121316228, 181504240, 222586609
Offset: 1
Keywords
Examples
2+3+5+7+11==13 (mod 15) and so 15 has this property.
Links
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6571
Crossrefs
Cf. A000720.
Programs
-
Mathematica
Reap[Module[{c = 0}, For[n = 4, n <= 10^6, n++, If[PrimeQ[n - 1], c += NextPrime[n - 1, -1]]; If[Mod[c, n] == NextPrime[n, -1], Sow[n]]]]]