cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jake Foster

Jake Foster's wiki page.

Jake Foster has authored 3 sequences.

A214343 a(n) is the smallest integer j such that the numbers of prime factors (counting multiplicity) in j, j+1, ... , j+n-1 are the full set {1,2,...,n}.

Original entry on oeis.org

2, 3, 6, 15, 77, 726, 6318, 189375, 755968, 871593371, 33714015615
Offset: 1

Author

Jake Foster, Jul 13 2012

Keywords

Comments

Next term a(10) > 5*10^7. Joerg Arndt, Jul 14 2012

Examples

			a(4)=15 because 15 has two prime factors, 16 has four, 17 has one and 18 has three (and 15 is the smallest number with this property).
a(5) = 77 because 77, 78, 79, 80 and 81 have 2, 3, 1, 5 and 4 prime factors.
		

Crossrefs

Programs

  • Maple
    A214343 := proc(n)
        refs := {seq(i,i=1..n)} ;
        for j from 1 do
            pf := {} ;
            for k from 0 to n-1 do
                pf := pf union {numtheory[bigomega](j+k)} ;
                if nops(pf) < k+1 then
                    break;
                end if;
            end do:
            if pf = refs then
                return j;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    f[n_] := f[n] = FactorInteger[n][[All, 2]] // Total;
    n = 1;
    i = 2;
    While[True,
      While[Union[Table[f[j], {j, i, i + n - 1}]] != Range[n],
       i += 1; f[i] =.
       ];
      Print[i]; n += 1;
      ];

Extensions

a(10)-a(11) from Donovan Johnson, Jul 15 2012

A196223 Natural numbers n such that Sum_{k = 1..pi(n)-1} p(k) == p(pi(n)) mod n, where p(k) denotes the k-th prime and pi(n) is the number of primes strictly less than n.

Original entry on oeis.org

6, 7, 15, 27, 41, 55, 172, 561, 1334, 6571, 11490, 429705, 2173016, 4417701, 9063353, 9531624, 40411847, 64538709, 83537963, 121316228, 181504240, 222586609
Offset: 1

Author

Jake Foster, Sep 29 2011

Keywords

Examples

			2+3+5+7+11==13 (mod 15) and so 15 has this property.
		

Crossrefs

Cf. A000720.

Programs

  • Mathematica
    Reap[Module[{c = 0}, For[n = 4, n <= 10^6, n++, If[PrimeQ[n - 1], c += NextPrime[n - 1, -1]]; If[Mod[c, n] == NextPrime[n, -1], Sow[n]]]]]

A146086 Number of n-digit numbers with each digit odd where the digits 1 and 3 occur an even number of times.

Original entry on oeis.org

3, 11, 45, 197, 903, 4271, 20625, 100937, 498123, 2470931, 12295605, 61300877, 305972943, 1528270391, 7636568985, 38168496017, 190799433363, 953868026651, 4768952712765, 23843601302357, 119214519727383, 596062138283711, 2980279310358945, 14901302408615897
Offset: 1

Author

Jake Foster, Oct 27 2008

Keywords

Comments

Let M = [3,1,1,0; 1,3,0,1; 1,0,3,1; 0,1,1,3] be a 4 x 4 matrix. Then a(n) = [M^n] (0,1); n = 1,2,3,.... - _Philippe Deléham, Aug 24 2020
With a(0) = 1, binomial transform of the sequence 1,2,6,20,72,272, ... (see A063376). - Philippe Deléham, Aug 24 2020

Examples

			For n=2 the a(2)=11 numbers are 11, 33, 55, 57, 59, 75, 77, 79, 95, 97, 99.
		

Crossrefs

Programs

Formula

a(n) = (5^n+2*3^n+1)/4.
From Colin Barker, Dec 31 2013: (Start)
a(n) = 9*a(n-1)-23*a(n-2)+15*a(n-3).
G.f.: -x*(15*x^2-16*x+3) / ((x-1)*(3*x-1)*(5*x-1)). (End)
E.g.f.: exp(3*x)*(cosh(x))^2 - 1. - G. C. Greubel, Jan 31 2016

Extensions

More terms from Colin Barker, Dec 31 2013