A196226 m such that A054024(m) (sum of divisors of m reduced modulo m) is 3 + m/2.
8, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1
Keywords
Programs
-
Maple
isA196226 := proc(n) sigmar := modp(numtheory[sigma](n),n) ; if sigmar = 3+n/2 then true; else false; end if; end proc: A196226 := proc(n) option remember; if n =1 then 8; else for a from procname(n-1)+1 do if isA196226(a) then return a; end if; end do: end if; end proc: seq(A196226(n),n=1..100) ; # R. J. Mathar, Aug 24 2023
-
PARI
lista(nn) = {for(n=1, nn, if ((sigma(n) % n) == (3 + n/2), print1(n, ", ")););} \\ Michel Marcus, Jul 12 2014
Comments