cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196233 Number of different ways to select 6 disjoint subsets from {1..n} with equal element sum.

Original entry on oeis.org

1, 3, 11, 30, 113, 330, 1284, 5342, 23976, 141836, 604359, 2977297, 15970382, 80990028, 384959038, 1943894348, 10652582085, 53759893907, 292581087499, 1608101020113, 8896321349456, 51394417812545
Offset: 11

Views

Author

Alois P. Heinz, Sep 29 2011

Keywords

Examples

			a(12) = 3: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}, {11} have element sum 11; {1,11}, {2,10}, {3,9}, {4,8}, {5,7}, {12} have element sum 12; {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7} have element sum 13.
		

Crossrefs

Programs

  • Mathematica
    b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0&, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}] ]];
    T[n_, k_] := Sum[b[Array[t&, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
    a[n_] := T[n, 6];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 11, 25}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)

Extensions

a(26) from Alois P. Heinz, Sep 25 2014
a(27)-a(32) from Bert Dobbelaere, Sep 05 2019