A196231
Irregular triangle T(n,k), n>=1, 1<=k<=ceiling(n/2), read by rows: T(n,k) is the number of different ways to select k disjoint (nonempty) subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 7, 1, 15, 3, 31, 7, 1, 63, 17, 3, 127, 43, 8, 1, 255, 108, 22, 3, 511, 273, 63, 9, 1, 1023, 708, 157, 23, 3, 2047, 1867, 502, 67, 10, 1, 4095, 4955, 1562, 203, 26, 3, 8191, 13256, 4688, 693, 83, 11, 1, 16383, 35790, 15533, 2584, 322, 30, 3, 32767, 97340
Offset: 1
T(8,4) = 3: {1,6}, {2,5}, {3,4}, {7} have element sum 7, {1,7}, {2,6}, {3,5}, {8} have element sum 8, and {1,8}, {2,7}, {3,6}, {4,5} have element sum 9.
Triangle begins:
. 1;
. 3;
. 7, 1;
. 15, 3;
. 31, 7, 1;
. 63, 17, 3;
. 127, 43, 8, 1;
. 255, 108, 22, 3;
-
b:= proc(l, n, k) option remember; local i, j; `if`(l=[0$k], 1, `if`(add(j, j=l)>n*(n-1)/2, 0, b(l, n-1, k))+ add(`if`(l[j] -n<0, 0, b(sort([seq(l[i] -`if`(i=j, n, 0), i=1..k)]), n-1, k)), j=1..k)) end: T:= (n, k)-> add(b([t$k], n, k), t=2*k-1..floor(n*(n+1)/(2*k)))/k!:
seq(seq(T(n, k), k=1..ceil(n/2)), n=1..15);
-
b[l_List, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0&, k], 1, If [Total[l] > n*(n-1)/2, 0, b[l, n-1, k]] + Sum [If [l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}]] ]; T[n_, k_] := Sum[b[Array[t&, k], n, k], {t, 2*k-1, Floor[n*(n+1)/(2*k)]}]/k!; Table[Table[T[n, k], {k, 1, Ceiling[n/2]}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
A196232
Number of different ways to select 5 disjoint subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 10, 26, 83, 322, 1182, 3971, 15662, 69371, 328016, 1460297, 6080910, 26901643, 123926071, 598722099, 2838432721, 13220493552, 63710261040, 312134646974, 1554373859464, 7673048166979, 37597940705361, 186986406578372
Offset: 9
a(10) = 3: {1,8}, {2,7}, {3,6}, {4,5}, {9} have element sum 9; {1,9}, {2,8}, {3,7}, {4,6}, {10} have element sum 10; {1,10}, {2,9}, {3,8}, {4,7}, {5,6} have element sum 11.
-
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}] ]];
T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
a[n_] := T[n, 5];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 9, 25}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A196233
Number of different ways to select 6 disjoint subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 11, 30, 113, 330, 1284, 5342, 23976, 141836, 604359, 2977297, 15970382, 80990028, 384959038, 1943894348, 10652582085, 53759893907, 292581087499, 1608101020113, 8896321349456, 51394417812545
Offset: 11
a(12) = 3: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}, {11} have element sum 11; {1,11}, {2,10}, {3,9}, {4,8}, {5,7}, {12} have element sum 12; {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7} have element sum 13.
-
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0&, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}] ]];
T[n_, k_] := Sum[b[Array[t&, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
a[n_] := T[n, 6];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 11, 25}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A196235
Number of different ways to select 8 disjoint subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 13, 37, 134, 466, 1916, 9409, 46006, 255714, 1525052, 9524779, 58944302, 355219704, 2315784192, 14568780212, 97993669291, 619342933593
Offset: 15
a(16) = 3: {1,14}, {2,13}, {3,12}, {4,11}, {5,10}, {6,9}, {7,8}, {15} have element sum 15; {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}, {16} have element sum 16; {1,16}, {2,15}, {3,14}, {4,13}, {5,12}, {6,11}, {7,10}, {8,9} have element sum 17.
-
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n - 1, k]], {j, 1, k}]]];
T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
a[n_] := T[n, 8];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 15, 25}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A196236
Number of different ways to select 9 disjoint subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 14, 40, 156, 554, 2369, 11841, 60654, 498320, 2987689, 15177178, 96041346, 656938806, 4640699138, 31263742313, 221075005249
Offset: 17
a(18) = 3: {1,16}, {2,15}, {3,14}, {4,13}, {5,12}, {6,11}, {7,10}, {8,9}, {17} have element sum 17; {1,17}, {2,16}, {3,15}, {4,14}, {5,13}, {6,12}, {7,11}, {8,10}, {18} have element sum 18; {1,18}, {2,17}, {3,16}, {4,15}, {5,14}, {6,13}, {7,12}, {8,11}, {9,10} have element sum 19.
-
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n - 1, k]], {j, 1, k}]]];
T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n+1)/(2*k) ]}]/k!;
a[n_] := T[n, 9];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 17, 25}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A196237
Number of different ways to select 10 disjoint subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 15, 44, 179, 741, 2989, 13932, 79433, 456134, 3096812, 21083037, 151022325, 1119202826, 8627014654
Offset: 19
a(20) = 3: {1,18}, {2,17}, {3,16}, {4,15}, {5,14}, {6,13}, {7,12}, {8,11}, {9,10}, {19} have element sum 19; {1,19}, {2,18}, {3,17}, {4,16}, {5,15}, {6,14}, {7,13}, {8,12}, {9,11}, {20} have element sum 20; {1,20}, {2,19}, {3,18}, {4,17}, {5,16}, {6,15}, {7,14}, {8,13}, {9,12}, {10,11} have element sum 21.
-
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n - 1, k]], {j, 1, k}]]];
T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
a[n_] := T[n, 10];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 19, 30}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A196534
Number of different ways to select disjoint nonempty subsets from {1..n} with equal element sum.
Original entry on oeis.org
1, 3, 8, 18, 39, 83, 179, 388, 857, 1914, 4494, 10844, 26923, 70645, 192297, 538646, 1579602, 4793718, 15010425, 48941642, 164010913, 566065123, 2025354291, 7450901462, 27986863322, 107940691328
Offset: 1
a(3) = 8: {{1}}, {{2}}, {{3}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1,2,3}}, {{1,2},{3}}. Element sums are 1, 2, 3, 3, 4, 5, 6, and 3, respectively.
Row sums of
A196231. Cf.
A000225,
A161943,
A164934,
A164949,
A196232,
A196233,
A196234,
A196235,
A196236,
A196237,
A058692.
-
b:= proc(l, n, k) option remember; local i, j; `if`(l=[0$k], 1, `if`(add(j, j=l)>n*(n-1)/2, 0, b(l, n-1, k))+ add(`if`(l[j]-n<0, 0, b(sort([seq(l[i] -`if`(i=j, n, 0), i=1..k)]), n-1, k)), j=1..k)) end: a:= n-> add(add(b([t$k], n, k), t=2*k-1..floor(n*(n+1)/(2*k)))/k!, k=1..n): seq(a(n), n=1..15);
-
b[l_, n_, k_] := b[l, n, k] = If[l == Array[0&, k], 1, If[Total[l] > n*(n-1)/2, 0, b[l, n-1, k]] + Sum[If[l[[j]]-n < 0, 0, b[Sort[Table[ l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}]];
a[n_] := Sum[Sum[b[Array[t&, k], n, k], {t, 2*k-1, Floor[n*(n+1)/(2*k)]} ]/k!, {k, 1, Ceiling[n/2]}];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments