A196265 Number of standard puzzles of shape 2 X n with support CK (see reference for precise definition).
1, 2, 4, 8, 26, 66, 276, 816, 4050, 13410, 75780, 274680, 1723050, 6735330, 46104660, 192296160, 1418802210, 6264006210, 49355252100, 229233450600, 1914861598650, 9309854203650, 81969299111700, 415483465597200, 3837397323409650, 20209910950879650
Offset: 1
Keywords
Examples
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 26*x^5 + 66*x^6 + 276*x^7 + 816*x^8 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Crossrefs
Cf. A235136.
Programs
-
Mathematica
a[ n_] := If[ n < 2, Boole[n == 1], With[{m = Mod[n, 2]}, 2^(n - m) (Pochhammer[ 1/4 + m/2, (n - m)/2] - (-1)^ m Pochhammer[ -1/4 + m/2, (n - m)/2]) ]]; (* Michael Somos, Jan 16 2014 *)
-
PARI
{a(n) = my(v=[1, 1]); if( n<2, n==1, for(k=1, n-1, v = [v[2], v[1] * (2*k-1)]); v[1] + v[2])}; /* Michael Somos, Jan 16 2014 */
Formula
E.g.f. A(x) =: y satisfies 0 = -(1 + x)^2 + y * x - y' * (1 + 2*x + 2*x^2) + y'' * (1 + x) = (1 - x) + y' * (1 - x) - y'' * (1 + 2*x^2) + y''' * x. - Michael Somos, Jan 16 2014
Comments