cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196505 Decimal expansion of greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2).

Original entry on oeis.org

4, 9, 2, 9, 1, 2, 4, 5, 1, 7, 5, 4, 9, 0, 7, 5, 7, 4, 1, 8, 7, 7, 8, 0, 1, 8, 9, 8, 2, 2, 2, 3, 2, 9, 7, 6, 9, 1, 5, 6, 9, 7, 0, 1, 3, 2, 5, 7, 1, 1, 5, 0, 0, 7, 0, 2, 5, 9, 2, 6, 5, 3, 6, 0, 0, 4, 0, 4, 4, 9, 2, 5, 9, 1, 0, 6, 8, 6, 4, 1, 8, 3, 4, 8, 9, 2, 0, 2, 5, 0, 0, 7, 1, 0, 6, 4, 7, 4, 5, 9
Offset: 0

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Comments

Let M be the greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2). Then sin(1/x) > 1/sqrt(1+x^2) for all x>M=0.4929... See A196500-A196504 for related constants and inequalities.

Examples

			x=0.4929124517549075741877801898222329769156970132...
		

Crossrefs

Programs

  • Mathematica
    Plot[{Sin[x], x/Sqrt[1 + x^2]}, {x, 0, 9}]
    Plot[{Sin[1/x], 1/Sqrt[1 + x^2]}, {x, 0.1, 1.0}] (for A196505)
    t = x /.FindRoot[Sin[x] == x/Sqrt[1 + x^2], {x, .10, 3}, WorkingPrecision -> 100]
    RealDigits[t]   (* A196504 *)
    1/t
    RealDigits[1/t] (* A196505 *)