cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196519 Decimal expansion of the number x satisfying x*e^x=6.

Original entry on oeis.org

1, 4, 3, 2, 4, 0, 4, 7, 7, 5, 8, 9, 8, 3, 0, 0, 3, 1, 1, 2, 3, 4, 0, 7, 8, 0, 0, 7, 2, 1, 2, 0, 5, 8, 6, 9, 4, 7, 8, 6, 4, 3, 4, 6, 0, 8, 8, 0, 4, 3, 0, 2, 0, 2, 5, 6, 5, 5, 9, 4, 8, 4, 9, 6, 3, 4, 3, 3, 9, 9, 5, 9, 3, 2, 5, 9, 8, 3, 1, 1, 1, 6, 8, 5, 7, 6, 3, 8, 4, 2, 2, 2, 9, 9, 4, 4, 5, 6, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			1.43240477589830031123407800721205869478643460...
		

Programs

  • Mathematica
    Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A030175 *)
    t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196515 *)
    t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196516 *)
    t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196517 *)
    t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196518 *)
    t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196519 *)
    RealDigits[LambertW[6], 10, 50][[1]] (* G. C. Greubel, Nov 16 2017 *)
  • PARI
    lambertw(6) \\ G. C. Greubel, Nov 16 2017

Extensions

Terms a(95) onward corrected by G. C. Greubel, Nov 16 2017