A196526 a(n) is the number of ways the n-th prime number prime(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(prime(n)).
2, 1, 1, 3, 2, 3, 2, 1, 5, 5, 4, 4, 3, 4, 8, 8, 7, 7, 7, 7, 8, 7, 8, 7, 6, 6, 7, 7, 7, 12, 13, 12, 11, 12, 10, 10, 11, 11, 16, 18, 18, 18, 17, 18, 18, 17, 16, 15, 16, 17, 15, 18, 18, 18, 18, 17, 16, 18, 17, 16, 24, 24, 23, 23, 23, 23, 24, 23, 24, 24, 25, 32, 33, 34, 33, 36, 34, 35, 33, 35, 33, 32, 35, 34, 33, 33, 34, 33, 35, 34, 31, 32, 30, 35, 35, 34, 32, 32, 45
Offset: 2
Examples
n=2: prime(2)=3 = 2 + 1 = 2^2 - 1, so a(2)=2; n=3: prime(3)=5 = 2^2 + 1, so a(3)=1; ... n=10: prime(10)=29, int(sqrt(29))=5, 29 = 2+3^3 = 2^2+5^2 = 2^2*5+3^2 = 2^3*3+5 = 2*3*5-1, so a(10)=5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..1000
Programs
-
Haskell
a196526 n = length [c | let p = a000040 n, c <- [-1,1..p-1], let b = p - c, gcd b c == 1, a006530 b ^ 2 < p || p == 3, a006530 c ^ 2 < p] -- Reinhard Zumkeller, Oct 04 2001
-
Mathematica
AllPrimes[k_] := Module[{p, maxfactor, pset}, p = Prime[k]; maxfactor = NextPrime[IntegerPart[Sqrt[p]] + 1, -1]; If[maxfactor == -2, pset = {2}, p0 = 2; pset = {2}; While[p0 = NextPrime[p0]; p0 <= maxfactor, pset = Union[pset, {p0}]]]; pset]; NextIntegerWithFactor[seed_, fset_] := Module[{m, a, l, i, fset1}, m = seed - 1; While[m++; If[Mod[m, 2] == 1, m++]; a = FactorInteger[m]; l = Length[a]; fset1 = {}; Do[fset1 = Union[fset1, {a[[i]][[1]]}], {i, 1, l}]; Intersection[fset1, fset] != fset1]; m]; FactorSet[seed_] := Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a]; fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}]; fset2]; SplitPrime[n_, q0_] := Module[{p, pset, q, r, rp, fs, rs, qs}, p = Prime[n]; pset = AllPrimes[n]; q = q0; While[q++; q = NextIntegerWithFactor[q, pset]; r = p - q; rp = Abs[r]; fs = FactorSet[rp]; rs = Complement[pset, FactorSet[q]]; qs = Intersection[fs, rs]; (fs != {1}) && (fs != qs) && (q <= (p + 1))]; {p, q, r} ]; AllSplits[n_] := Module[{q, ss, spls}, q = 0; spls = {}; While[ss = SplitPrime[n, q]; q = ss[[2]]; If[q <= (Prime[n] + 1), spls = Union[spls, {ss}]]; q < (Prime[n] + 1)]; spls]; Table[ Length[AllSplits[i]], {i, 2, 100}] (* Lei Zhou *) zhouAbleCount[n_] := Length[Select[Range[-1, Prime[n], 2], GCD[#, Prime[n] - #] == 1 && FactorInteger[#][[-1, 1]] <= Sqrt[Prime[n]] && (IntegerQ[Log[2, Prime[n] - #]] || FactorInteger[Prime[n] - #][[-1, 1]] <= Sqrt[Prime[n]]) &]]; Table[zhouAbleCount[n], {n, 2, 100}] (* Alonso del Arte, Oct 03 2011 *)
Comments