A196546 Numbers n such that the sum of the distinct residues of x^n (mod n), x=0..n-1, is divisible by n.
1, 3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101
Offset: 1
Keywords
Examples
n= 14 is in the sequence because x^14 == 0, 1, 2, 4, 7, 8, 9, or 11 (mod 14), and the sum 0+1+2+4+7+8+9+11 = 42 is divisible by 14.
Crossrefs
Cf. A195637.
Programs
-
Maple
sumDistRes := proc(n) local re,x,r ; re := {} ; for x from 0 to n-1 do re := re union { modp(x^n,n) } ; end do: add(r,r=re) ; end proc: for n from 1 to 100 do if sumDistRes(n) mod n = 0 then printf("%d,",n); end if; end do: # R. J. Mathar, Oct 04 2011
-
Mathematica
sumDistRes[n_] := Module[{re = {}, x}, For[x = 0, x <= n-1, x++, re = re ~Union~ {PowerMod[x, n, n]}]; Total[re]]; Select[Range[100], Mod[sumDistRes[#], #] == 0&] (* Jean-François Alcover, Oct 20 2023, after R. J. Mathar *)
Comments