A196551 Decimal expansion of the number x satisfying x*2^x=4.
1, 4, 5, 6, 9, 9, 9, 5, 5, 9, 1, 3, 4, 5, 9, 1, 8, 2, 6, 2, 5, 3, 2, 2, 3, 0, 2, 5, 6, 9, 4, 2, 5, 5, 4, 0, 8, 6, 4, 9, 8, 5, 9, 7, 2, 5, 5, 8, 1, 9, 9, 6, 4, 3, 4, 9, 8, 1, 1, 3, 5, 9, 6, 7, 4, 0, 4, 5, 5, 9, 4, 7, 0, 1, 8, 8, 1, 5, 9, 0, 6, 9, 7, 5, 2, 4, 0, 6, 0, 3, 9, 2, 7, 6, 8, 6, 8, 8, 0, 0
Offset: 1
Examples
x=1.4569995591345918262532230256942554086498597255...
Programs
-
Mathematica
Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] RealDigits[t] (* A104748 *) t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100] RealDigits[t] (* A196549 *) t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196550 *) t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196551 *) t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196552 *) t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196553 *) RealDigits[ ProductLog[ Log[16] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)