A196608 Decimal expansion of the least x>0 satisfying 1=x*cos(2*x).
2, 5, 5, 7, 0, 9, 1, 0, 9, 3, 9, 2, 7, 9, 0, 7, 9, 3, 7, 4, 5, 9, 8, 8, 7, 7, 7, 4, 4, 6, 3, 4, 0, 0, 3, 8, 6, 7, 5, 2, 8, 1, 8, 0, 9, 9, 9, 0, 7, 2, 1, 9, 3, 8, 0, 0, 2, 3, 3, 1, 0, 9, 3, 7, 9, 6, 3, 4, 3, 2, 8, 8, 3, 0, 1, 7, 1, 3, 6, 0, 0, 4, 8, 8, 7, 8, 2, 1, 9, 2, 9, 5, 9, 9, 7, 5, 4, 8, 9, 8
Offset: 1
Examples
x=2.55709109392790793745988777446340038675281809990...
Programs
-
Mathematica
Plot[{1/x, Cos[x], Cos[2 x], Cos[3 x], Cos[4 x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A133868 *) t = x /. FindRoot[1/x == Cos[2 x], {x, 2, 3}, WorkingPrecision -> 100] RealDigits[t] (* A196608 *) t = x /. FindRoot[1/x == Cos[3 x], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196602 *) t = x /. FindRoot[1/x == Cos[4 x], {x, .9, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196609 *) t = x /. FindRoot[1/x == Cos[5 x], {x, .9, 1.2}, WorkingPrecision -> 100] RealDigits[t] (* A196626 *)
Formula
x is the limit of the iteration of x -> Pi - arccos(1/x)/2 on an initial argument a such that abs(a)>=1. - Chayim Lowen, Aug 16 2015
Comments