cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196606 Decimal expansion of the least x>0 satisfying sec(x)=5x.

Original entry on oeis.org

2, 0, 4, 2, 4, 5, 3, 7, 8, 7, 0, 4, 5, 3, 8, 9, 0, 1, 7, 2, 3, 4, 5, 9, 0, 5, 7, 0, 5, 5, 2, 8, 0, 9, 7, 7, 3, 4, 4, 5, 7, 3, 1, 1, 3, 0, 6, 3, 5, 9, 6, 9, 1, 1, 2, 8, 0, 3, 7, 9, 7, 1, 8, 5, 8, 3, 3, 0, 7, 9, 1, 4, 4, 2, 3, 6, 4, 3, 1, 1, 5, 3, 1, 5, 5, 7, 7, 4, 2, 6, 7, 8, 2, 1, 7, 0, 8, 0, 1, 5, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			0.2042453787045389017234590570552809773445731130635969...
		

Programs

  • Mathematica
    Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196603 *)
    t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196604 *)
    t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196605 *)
    t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196606 *)
    t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196607 *)