A196613 Decimal expansion of the least x>0 satisfying 3*sec(x)=x.
5, 3, 1, 2, 4, 6, 9, 7, 1, 1, 6, 5, 6, 5, 6, 7, 6, 9, 7, 3, 6, 6, 1, 5, 7, 9, 9, 8, 2, 5, 4, 4, 0, 3, 1, 8, 1, 1, 9, 1, 6, 9, 4, 1, 2, 2, 9, 2, 0, 7, 8, 3, 5, 5, 2, 4, 1, 2, 5, 6, 2, 2, 8, 3, 8, 4, 9, 0, 6, 5, 4, 7, 0, 5, 4, 7, 0, 2, 9, 2, 3, 6, 4, 4, 2, 8, 8, 2, 9, 8, 4, 8, 7, 2, 6, 5, 3, 2, 5, 2, 9
Offset: 1
Examples
x=5.31246971165656769736615799825440318119169412292...
Programs
-
Mathematica
Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A133868 *) t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196612 *) t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196613 *) t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196614 *) t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196615 *) t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196616 *)