A196616 Decimal expansion of the least x>0 satisfying 6*sec(x)=x.
6, 7, 6, 2, 6, 9, 7, 9, 4, 4, 6, 8, 2, 5, 4, 4, 5, 0, 0, 9, 9, 7, 9, 3, 6, 0, 1, 4, 4, 6, 0, 8, 1, 0, 9, 4, 9, 1, 7, 6, 5, 8, 8, 3, 1, 7, 6, 0, 2, 4, 4, 0, 0, 5, 2, 4, 0, 6, 2, 0, 6, 8, 3, 3, 1, 6, 6, 5, 6, 4, 5, 4, 2, 8, 3, 8, 2, 8, 2, 5, 4, 2, 7, 9, 8, 1, 4, 2, 7, 3, 6, 3, 0, 7, 4, 2, 3, 1, 4, 9, 6
Offset: 1
Examples
x=6.7626979446825445009979360144608109491765883176...
Programs
-
Mathematica
Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A133868 *) t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196612 *) t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196613 *) t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196614 *) t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196615 *) t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196616 *)