A196619
Decimal expansion of the number c for which the curve y=cos(x) is tangent to the curve y=(1/x)-c, and 0
4, 5, 4, 4, 5, 1, 8, 6, 6, 3, 5, 4, 2, 2, 6, 5, 9, 9, 8, 1, 9, 6, 9, 1, 1, 4, 6, 3, 2, 9, 5, 2, 3, 4, 0, 2, 8, 3, 6, 3, 4, 6, 9, 6, 1, 1, 7, 9, 5, 6, 7, 2, 2, 1, 8, 1, 1, 7, 2, 6, 3, 4, 1, 4, 5, 1, 2, 5, 7, 1, 7, 1, 7, 6, 6, 8, 0, 0, 5, 9, 9, 3, 4, 9, 4, 8, 5, 0, 9, 9, 7, 9, 0, 1, 6, 0, 2, 7, 2
Offset: 0
Examples
x = 0.454451866354226599819691146329523402836346961...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
Plot[{1/x - .4544, Cos[x]}, {x, 0, 2 Pi}] xt = x /. FindRoot[x^(-2) == Sin[x], {x, .5, .8}, WorkingPrecision -> 100] RealDigits[xt] (* A196617 *) Cos[xt] RealDigits[Cos[xt]] (* A196618 *) c = N[1/xt - Cos[xt], 100] RealDigits[c] (* A196619 *) slope = -Sin[xt] RealDigits[slope] (* A196620 *)
-
PARI
a=1; c=0; x=solve(x=1, 1.5, a*x^2 + c - 1/sin(x)); 1/x - cos(x) \\ G. C. Greubel, Aug 22 2018