A196620 Decimal expansion of the slope (negative) of the tangent line at the point of tangency of the curves y=cos(x) and y=(1/x)-c, where c is given by A196619.
8, 7, 6, 3, 4, 6, 2, 0, 1, 1, 1, 8, 3, 7, 4, 1, 9, 1, 1, 2, 3, 4, 9, 4, 1, 1, 3, 9, 2, 2, 8, 3, 0, 2, 4, 8, 2, 1, 3, 1, 7, 7, 2, 3, 5, 9, 5, 9, 6, 9, 0, 8, 7, 6, 1, 6, 9, 6, 2, 3, 0, 2, 0, 2, 9, 3, 8, 2, 0, 9, 1, 7, 8, 1, 6, 7, 8, 2, 2, 6, 2, 7, 5, 1, 0, 3, 9, 1, 6, 7, 7, 6, 2, 9, 9, 4, 5, 2, 1, 3, 1
Offset: 0
Examples
x = -0.87634620111837419112349411392283024821317...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A196619.
Programs
-
Mathematica
Plot[{1/x - .4544, Cos[x]}, {x, 0, 2 Pi}] xt = x /. FindRoot[x^(-2) == Sin[x], {x, .5, .8}, WorkingPrecision -> 100] RealDigits[xt] (* A196617 *) Cos[xt] RealDigits[Cos[xt]] (* A196618 *) c = N[1/xt - Cos[xt], 100] RealDigits[c] (* A196619 *) slope = -Sin[xt] RealDigits[slope] (* A196620 *)
-
PARI
a=1; c=0; x=solve(x=1, 1.5, a*x^2 + c - 1/sin(x)); -sin(x) \\ G. C. Greubel, Aug 22 2018
Extensions
Terms a(86) onward corrected by G. C. Greubel, Aug 22 2018