A196670 The Chebyshev primes of index 4.
5, 7, 17, 19, 31, 37, 41, 43, 53, 59, 67, 73, 79, 83, 101, 103, 107, 127, 131, 149, 157, 163, 179, 181, 197, 199, 211, 223, 227, 257, 269, 277, 281, 317, 331, 337, 347, 353, 379, 389, 419, 421, 439, 461, 463, 467, 479, 491, 499, 509, 541, 563, 569, 577, 617
Offset: 1
Keywords
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..75
- M. Planat and P. Solé, Efficient prime counting and the Chebyshev primes arXiv:1109.6489 [math.NT], 2011.
Programs
-
Magma
Mangoldt:=function(n); if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if; end function; tcheb:=function(n); x:=0; for i in [1..n] do x:=x+Mangoldt(i); end for; return(x); end function; jump4:=function(n); x:=LogIntegral(tcheb(NthPrime(n)^4))-LogIntegral(tcheb(NthPrime(n)^4-1)); return x; end function; Set4:=[]; for i in [2..1000] do if jump4(i)-1/4 lt 0 then Set4:=Append(Set4,NthPrime(i)); NthPrime(i); end if; end for; Set4;
-
Maple
# The function PlanatSole(n,r) is in A196667. A196670 := n -> PlanatSole(n,4); # Peter Luschny, Oct 23 2011
-
Mathematica
ChebyshevPsi[n_] := Log[LCM @@ Range[n]]; Reap[Do[If[LogIntegral[ChebyshevPsi[p^4]] - LogIntegral[ChebyshevPsi[p^4 - 1]] < 1/4, Print[p]; Sow[p]], {p, Prime[Range[2, 120]]}]][[2, 1]] (* Jean-François Alcover, Jul 14 2018, updated Dec 06 2018 *)
-
Perl
use ntheory ":all"; forprimes { say if 4 *(LogarithmicIntegral(chebyshev_psi($**4)) - LogarithmicIntegral(chebyshev_psi($**4-1))) < 1 } 3,100; # Dana Jacobsen, Dec 29 2015
-
Sage
def A196670(n) : return PlanatSole(n,4) # The function PlanatSole(n,r) is in A196667. # Peter Luschny, Oct 23 2011
Extensions
More terms from Dana Jacobsen, Dec 29 2015
Comments