A196788
a(n) is the first occurrence of n in A196697.
Original entry on oeis.org
1, 1805, 133, 2, 3, 4, 5, 13, 6, 9, 8, 10, 19, 16, 32, 24, 74, 30, 18, 60, 168, 20, 42, 90, 180, 210, 186, 408, 144, 1020, 1050, 900, 2520, 3348, 2850, 5520, 3390, 774, 5760
Offset: 1
A196697(1)=1, a(1)=1;
A196697(2)=4, a(4)=2;
...
A196697(1805)=2, a(2)=1805; (for any k<1805, A196697(k)<>2)
-
b = 2; max = 39; Array[fa, max]; Do[
fa[k] = 0, {k, 1, max}]; filled = 0; i = 0; While[filled < max, i++;
c1 = b^i; cs = {};
Do[c2 = b^j; cp = c1 + c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 + c2 - 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 - 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]], {j, 0, i - 1}];
ct = Length[cs];
If[ct <= max, If[fa[ct] == 0, fa[ct] = i; filled++]]]; Table[
fa[k], {k, 1, max}]
A196698
Number of primes of the form 3^n +- 3^k +- 1 with 0 <= k < n.
Original entry on oeis.org
2, 4, 6, 8, 7, 11, 7, 10, 11, 11, 8, 10, 9, 11, 14, 11, 10, 14, 7, 16, 12, 12, 7, 17, 10, 7, 15, 13, 4, 11, 11, 11, 13, 6, 12, 18, 9, 12, 17, 14, 13, 11, 10, 11, 13, 6, 7, 17, 9, 14, 9, 10, 13, 20, 8, 11, 10, 9, 8, 16, 12, 12, 13, 8, 12, 14, 8, 8, 10, 13, 9
Offset: 1
n = 1, 3 = 3^1 + 3^0 - 1 = 3^1 - 3^0 + 1; 5 = 3^1 + 3^0 + 1, two primes found, so a(1) = 2;
n = 2, 5 = 3^2 - 3^1 - 1; 7 = 3^2 - 3^1 + 1 = 3^2 - 3^0 - 1; 11 = 3^2 + 3^1 - 1 = 3^2 + 3^0 + 1; 13 = 3^2 + 3^1 + 1, four primes found, so a(2) = 4;
...
n = 7, 1459 = 3^7 - 3^6 + 1; 2161 = 3^7 - 3^3 + 1; 2179 = 3^7 - 3^1 + 1; 2213 = 3^7 + 3^3 - 1; 2267 = 3^7 + 3^4 - 1; 2269 = 3^7 + 3^4 + 1; 2917 = 3^7 + 3^6 + 1, seven primes found, so a(7) = 7.
-
Table[c1 = 3^i; cs = {};
Do[c2 = 3^j; cp = c1 + c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 + c2 - 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 - 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]], {j, 1, i - 1}];
Length[cs], {i, 2, 100}]
(* Alternative: *)
Table[s = 3^i; ct = 0; Do[t = 3^j; a1 = s + t; a2 = s - t; If[PrimeQ[a1 + 1], ct++]; If[PrimeQ[a1 - 1], ct++]; If[PrimeQ[a2 + 1], ct++]; If[PrimeQ[a2 - 1], ct++], {j, 1, i - 1}]; ct, {i, 2, 100}] (* Lei Zhou, Mar 19 2015 *)
-
a(n)=sum(k=0, n-1, isprime(3^n-3^k-1)+isprime(3^n-3^k+1)+isprime(3^n+3^k-1)+isprime(3^n+3^k+1)) \\ Charles R Greathouse IV, Oct 06 2011
A238900
Least k such that one of 2^n +- 2^k +- 1 is prime, where 0 < k < n, or 0 if there is no such prime.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 12, 2, 11, 1, 1, 1, 1, 2, 3, 9, 5, 2, 3, 3, 3, 4, 5, 4, 8, 3, 7, 4, 2, 6, 17, 14, 6, 12, 2, 5, 1, 2, 3, 6, 11, 5, 1, 16, 8, 8, 20, 2, 1, 5, 7, 19, 6, 4, 19, 8, 5, 4, 5, 3, 9, 6, 4, 3, 13, 1, 24
Offset: 2
-
Table[c1 = 2^n; k = 1; While[c2 = 2^k; k < n && ! (PrimeQ[c1 + c2 + 1] || PrimeQ[c1 + c2 - 1] || PrimeQ[c1 - c2 + 1] || PrimeQ[c1 - c2 - 1]), k++]; If[k == n, 0, k], {n, 2, 100}]
A196778
a(n) is the number of primes in the form of 4^n+/-4^k+/-1, while 0 <= k < n.
Original entry on oeis.org
1, 3, 5, 6, 7, 7, 9, 8, 9, 12, 7, 9, 4, 4, 8, 11, 6, 11, 7, 8, 14, 7, 8, 11, 6, 10, 9, 8, 8, 11, 6, 10, 13, 7, 6, 9, 10, 8, 8, 10, 5, 10, 15, 6, 11, 9, 14, 7, 8, 16, 12, 10, 5, 10, 9, 8, 10, 8, 7, 10, 11, 13, 12, 6, 12, 9, 4, 10, 12, 13, 8, 14, 7, 2, 13, 7
Offset: 1
n=1, 2=4^1-4^0-4^0, 1 prime found, so a(1)=1;
n=2, 11=4^2-4^1-1; 13=4^2-4^1+1; 19=4^2+4^1-1, 3 primes found, so a(2)=3;
...
n=13, 67043329=4^13-4^8+1; 67104769=4^13-4^6+1; 67108859=4^13-4^1-1; 67108879=4^13+4^2-1, 4 primes found, so a(13)=4;
-
b = 4; Table[c1 = b^i; cs = {};
Do[c2 = b^j; cp = c1 + c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 + c2 - 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 - 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]], {j, 0, i - 1}];
ct = Length[cs]; ct, {i, 1, 100}]
A232190
a(n) is the number of primes of the form 2^b + 2n +- 2^k +- 1 and 2^(b+2) - 2^b - 2n +- 2^k +- 1, where b is the length of the binary representation of 2n, and 0
Original entry on oeis.org
5, 9, 7, 10, 11, 10, 10, 13, 14, 14, 15, 12, 13, 11, 12, 15, 18, 15, 15, 15, 17, 17, 18, 12, 15, 14, 14, 12, 16, 14, 13, 14, 16, 23, 20, 16, 18, 16, 17, 16, 17, 16, 16, 13, 17, 15, 15, 15, 20, 18, 20, 19, 17, 18, 18, 14, 15, 18, 18, 13, 17, 14, 15, 17, 17, 16
Offset: 1
When n=1, 2n=2, b=2, the set of numbers of the form 2^b + 2n + 2^k + 1 is {9, 11}; form 2^b + 2n + 2^k - 1: {7, 9}; form 2^b + 2n - 2^k - 1: {1, 3}; form 2^b + 2n - 2^k + 1: {3, 5}; form 2^(b+2) - 2^b - 2n - 2^k - 1: {7, 5}; form 2^(b+2) - 2^b - 2n - 2^k + 1: {9, 7}; form 2^(b+2) - 2^b - 2n + 2^k + 1: {15, 13}; form 2^(b+2) - 2^b - 2n + 2^k - 1: {13, 11}. The union of the above sets is {1, 3, 5, 7, 9, 11, 13, 15}. Among the 8 numbers, 5 are primes. So a(1)=5.
When n=11, using the same rule, the candidate number set is {21, 23, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 105, 107}. Among these 32 numbers, 15 are prime: {23, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 107}. So a(11)=15.
-
Table[n2 = 2*n; b = Ceiling[Log[2, n2 + 1]]; sdm = 2^b + n2 - 1;
sdp = 2^b + n2 + 1; cset = {}; Do[cpmp = sdm + 2^k; cpmm = sdm - 2^k; cppp = sdp + 2^k; cppm = sdp - 2^k; upl = 2^(b + 2); cset = Join[
cset, {cpmp, upl - cpmp, cpmm, upl - cpmm, cppp, upl - cppp, cppm,
upl - cppm}], {k, 1, b}]; cset = Union[cset];
size = Length[cset]; ct = 0;
Do[If[PrimeQ[cset[[j]]], ct++], {j, 1, size}]; ct, {n, 1, 66}]
A196779
a(n) is the smallest number m such that no prime takes the form of n^m+/-n^k+/-1, while 0 <= k < m and m > 1.
Original entry on oeis.org
1147, 113, 113, 400, 866, 131, 399, 32, 26, 29, 23, 58, 77, 21, 42, 3, 817, 4, 2, 37, 80, 29, 181, 39, 120, 382, 76, 5, 29, 20, 48, 19, 36, 7, 43, 7, 62, 22, 7, 43, 5, 17, 23, 44, 52, 137, 103, 2, 5, 49, 31, 10, 30, 5, 25, 25, 49, 10, 72, 50, 13, 4, 7, 6
Offset: 5
n=5, there is no prime number in the form of 5^1147+/-5^k+/-1 for 0 <= k < 1147
-
Table[i = 1; While[i++; c1 = b^i; cs = {};
Do[c2 = b^j; cp = c1 + c2 + 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 + c2 - 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 - 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]], {j, 0, i - 1}];
ct = Length[cs]; ct > 0]; i, {b, 5, 100}]
Showing 1-6 of 6 results.
Comments