A196721 Number of subsets of {1..n} (including empty set) such that the pairwise LCMs of elements are all distinct.
1, 2, 4, 8, 14, 28, 42, 84, 132, 236, 352, 704, 920, 1840, 2736, 3816, 5700, 11400, 15384, 30768, 39552, 54656, 81672, 163344, 196176, 362656, 542304, 930352, 1195168, 2390336, 2914304, 5828608, 8513920, 11674848, 17490432, 23484224, 28058816, 56117632, 84100800
Offset: 0
Keywords
Examples
a(4) = 14: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..50
Programs
-
Maple
b:= proc(n, s) local sn, m; m:= nops(s); sn:= [s[], n]; `if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq( ilcm(sn[i], sn[j]), j=i+1..m+1), i=1..m)})), b(n-1, sn), 0)) end: a:= proc(n) option remember; b(n-1, [n]) +`if`(n=0, 0, a(n-1)) end: seq(a(n), n=0..10);
-
Mathematica
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length @ Union @ Flatten @ Table[LCM [sn[[i]], sn[[j]]], {i, 1, m}, {j, i+1, m+1}], b[n-1, sn], 0]]]; a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]]; Table[ Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
Extensions
Terms a(31) and beyond from Fausto A. C. Cariboni, Oct 18 2020