A196722 Number of subsets of {1..n} (including empty set) such that the pairwise LCMs of elements are not distinct.
1, 2, 4, 7, 11, 16, 23, 30, 38, 47, 58, 69, 83, 96, 111, 128, 144, 161, 181, 200, 223, 246, 269, 292, 319, 344, 371, 398, 429, 458, 496, 527, 559, 594, 629, 668, 708, 745, 784, 825, 870, 911, 962, 1005, 1052, 1102, 1149, 1196, 1248, 1297, 1349, 1402, 1457, 1510
Offset: 0
Keywords
Examples
A(6) = 23: {}, {1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}, {2,3,6}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, s) local sn, m; m:= nops(s); sn:= [s[], n]; `if`(n<1, 1, b(n-1, s) +`if`(1 >= nops(({seq(seq( ilcm(sn[i], sn[j]), j=i+1..m+1), i=1..m)})), b(n-1, sn), 0)) end: a:= proc(n) option remember; b(n-1, [n]) +`if`(n=0, 0, a(n-1)) end: seq(a(n), n=0..50);
-
Mathematica
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n<1, 1, b[n-1, s] + If[1 >= Length @ Union @ Flatten @ Table[ LCM[ sn[[i]], sn[[j]]], {i, 1, m}, {j, i+1, m+1}], b[n-1, sn], 0]]]; a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 12 2017, translated from Maple *)
Comments