A196757 Decimal expansion of the least x>0 satisfying 1=6x*sin(x).
4, 1, 4, 1, 5, 9, 9, 3, 3, 2, 3, 1, 8, 7, 2, 9, 7, 5, 5, 1, 3, 7, 5, 7, 8, 9, 6, 3, 2, 0, 4, 4, 2, 1, 1, 2, 3, 0, 9, 6, 7, 5, 1, 8, 1, 1, 8, 3, 7, 6, 6, 2, 0, 1, 2, 3, 4, 3, 7, 5, 4, 9, 7, 4, 3, 7, 0, 1, 9, 0, 4, 2, 9, 3, 4, 9, 2, 2, 5, 1, 8, 8, 1, 4, 8, 1, 6, 1, 6, 6, 4, 3, 9, 2, 8, 2, 8, 1, 2, 2, 9
Offset: 0
Examples
0.4141599332318729755137578963204421123096...
Crossrefs
Cf. A196758.
Programs
-
Mathematica
Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A133866 *) t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196624 *) t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196754 *) t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196755 *) t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196756 *) t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196757 *)