A196760 Decimal expansion of the least x>0 satisfying 2=x*sin(x).
6, 5, 9, 1, 4, 6, 7, 8, 0, 7, 2, 7, 6, 4, 5, 0, 4, 0, 8, 6, 8, 9, 1, 9, 3, 5, 3, 6, 4, 5, 6, 4, 7, 7, 3, 6, 6, 6, 0, 6, 9, 5, 3, 6, 2, 0, 3, 2, 8, 7, 0, 8, 9, 1, 3, 0, 8, 6, 4, 5, 7, 2, 7, 8, 2, 4, 9, 4, 9, 9, 7, 0, 6, 6, 6, 9, 6, 3, 3, 5, 0, 8, 4, 7, 8, 9, 6, 7, 6, 7, 2, 2, 6, 7, 5, 4, 6, 3, 5, 0, 6
Offset: 1
Examples
x=6.591467807276450408689193536456477366606...
Crossrefs
Cf. A196765.
Programs
-
Mathematica
Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}] t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] RealDigits[t] (* A133866 *) t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196760 *) t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196761 *) t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196762 *) t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196763 *) t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] RealDigits[t] (* A196764 *)