A196776 Triangle T(n,k) gives the number of ordered partitions of an n set into k odd-sized blocks.
1, 0, 2, 1, 0, 6, 0, 8, 0, 24, 1, 0, 60, 0, 120, 0, 32, 0, 480, 0, 720, 1, 0, 546, 0, 4200, 0, 5040, 0, 128, 0, 8064, 0, 40320, 0, 40320, 1, 0, 4920, 0, 115920, 0, 423360, 0, 362880, 0, 512, 0, 130560, 0, 1693440, 0, 4838400, 0, 3628800
Offset: 1
Examples
Triangle begins .n\k.|..1....2....3....4.....5....6.....7 = = = = = = = = = = = = = = = = = = = = = ..1..|..1 ..2..|..0....2 ..3..|..1....0....6 ..4..|..0....8....0...24 ..5..|..1....0...60....0...120 ..6..|..0...32....0..480.....0..720 ..7..|..1....0..546....0..4200....0..5040 ... T(4,2) = 8: The 8 ordered partitions of the set {1,2,3,4} into 2 odd-sized blocks are {1}{2,3,4}, {2,3,4}{1}, {2}{1,3,4}, {1,3,4}{2}, {3}{1,2,4}, {1,2,4}{3}, {4}{1,2,3} and {1,2,3}{4}. Example of recurrence relation: T(7,3) = 3^2*T(5,3) + 3*(3-1)*T(5,1) = 9*60 + 6*1 = 546.
Formula
T(n,k) = 1/(2^k)*sum {j = 0..k}(-1)^(k-j)*binomial(k,j)*(2*j-k)^n.
Recurrence: T(n+2,k) = k^2*T(n,k) + k*(k-1)*T(n,k-2).
E.g.f.: x*sinh(t)/(1-x*sinh(t)) = x*t + 2*x^2*t^2/2! + (x+6*x^3)*t^3/3! + (8*x^2+24*x^4)*t^4/4! + (x+60*x^3+120*x^5)*t^5/5! + ....
O.g.f. for column 2*k: (2*k)!*x^(2*k)/Product {j = 0..k} (1 - (2*j)^2*x^2).
O.g.f. for column 2*k+1: (2*k+1)!*x^(2*k+1)/Product {j = 0..k} (1 - (2*j+1)^2*x^2).
Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of (I-t*M)^-1 (apart from the initial 1) lists the row polynomials for the present triangle.
n-th row sum = A006154(n).
Row generating polynomials equal D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator sqrt(1+x^2)*d/dx. Cf. A136630. - Peter Bala, Dec 06 2011
Comments