cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A196794 a(n) = Sum_{k=0..n} binomial(n,k)*2^k*(k+1)^(n-k).

Original entry on oeis.org

1, 3, 13, 69, 425, 2953, 22701, 190445, 1725777, 16757649, 173244629, 1896821941, 21897166137, 265525063001, 3371067773565, 44683137692157, 616811052816545, 8847765111928609, 131622808197394341, 2027097866771329349, 32267707989783480201, 530125689222591861993
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    S:= series(exp(x+2*x*exp(x)),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jan 20 2017
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*2^k*(k+1)^(n-k))}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^m*x^m/(1-(m+1)*x+x*O(x^n))^(m+1)),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(x+2*x*exp(x+x*O(x^n))),n)}

Formula

O.g.f.: Sum_{n>=0} 2^n*x^n/(1 - (n+1)*x)^(n+1).
E.g.f.: exp(x + 2*x*exp(x)).
Showing 1-1 of 1 results.