A196845 Table of elementary symmetric function a_k(3,4,...,n+2) (no 1 and 2).
1, 1, 3, 1, 7, 12, 1, 12, 47, 60, 1, 18, 119, 342, 360, 1, 25, 245, 1175, 2754, 2520, 1, 33, 445, 3135, 12154, 24552, 20160, 1, 42, 742, 7140, 40369, 133938, 241128, 181440, 1, 52, 1162, 14560, 111769, 537628, 1580508, 2592720, 1814400, 1, 63, 1734, 27342, 271929, 1767087, 7494416, 19978308, 30334320, 19958400
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 3 2: 1 7 12 3: 1 12 47 60 4: 1 18 119 342 360 5: 1 25 245 1175 2754 2520 6: 1 33 445 3135 12154 24552 20160 7: 1 42 742 7140 40369 133938 241128 181440 ... a(3,2) = a_2(3,4,5) = 3*4+3*5+4*5 = 47. a(3,2) = 1*(|s(6,4)| - (1*14 + 2*13)) + 2*(|s(6,6)| -(1*0+2*0)) = 85 - 40 + 2(1-0) = 47. a(4,3) = a_3(3,4,5,6) = 3*4*5+3*4*6+3*5*6+4*5*6 = 342. a(4,3) = 1*(|s(7,4)| - (1*155 + 2*137)) + 2*(|s(7,6)| - (1*1 + 2*1)) = 735-429+2*(21-3) = 342.
Crossrefs
Formula
a(n,k) = 0 if n=0, k=0,...,n, with the elementary symmetric function a_k (see the comment above).
Comments