cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A196847 Coefficient table of numerator polynomials of the ordinary generating function for the alternating power sums for the numbers 1,2,...,2*n.

Original entry on oeis.org

1, 1, -5, 7, 1, -14, 73, -168, 148, 1, -27, 298, -1719, 5473, -9162, 6396, 1, -44, 830, -8756, 56453, -227744, 562060, -778800, 468576, 1, -65, 1865, -31070, 332463, -2385305, 11612795, -37875240, 79269676, -96420480, 52148160, 1, -90, 3647, -87900, 140202
Offset: 1

Views

Author

Wolfdieter Lang, Oct 27 2011

Keywords

Comments

The row length sequence of this array is A005408(n-1), n >= 1: 1,3,5,7,...
This is the array for the numerator polynomials of the o.g.f. of alternating power sums of the first 2*n positive integers.
The corresponding array for the first 2*n+1 positive integers is found in A196848.
The obvious e.g.f. of a(k,2*n) := Sum_{j=1..2*n} (-1)^j * j^k is ge(n,x) := Sum_{k>=0} a(k,2*n)*(x^k)/k! = Sum_{j=1..2*n} (-1)^j * exp(j*x) = exp(x)*(exp(2*n*x) - 1)/(exp(x) + 1).
Via Laplace transformation (see the link under A196837, addendum) one finds the corresponding o.g.f.: Ge(n,x) = n*x*Pe(n,x)/Product_{j=1..2*n} (1 - j*x) with the numerator polynomial Pe(n,x) = Sum_{m=0..2*(n-1)} a(n,m)*x^m.

Examples

			n\m 0   1   2     3     4       5      6       7      8
1:  1
2:  1  -5   7
3:  1 -14  73  -168   148
4:  1 -27 298 -1719  5473   -9162   6396
5:  1 -44 830 -8756 56453 -227744 562060 -778800 468576
...
The o.g.f. for the sequence a(k,4) := -(1^k - 2^k + 3^k -4^k) = 2*A053154(k), k>=0, (n=2) is Ge(2,x) = 2*x*(1-5*x+7*x^2)/Product_{j=1..4} (1 - j*x).
a(3,2) = (S_{1,2}(4,2) + S_{3,4}(4,2) + S_{5,6}(4,2))/3 = (A196845(4,2) + A196846(4,2) + |s(5,3)|)/3 = (119+65+35)/3 = 73. Here S_{5,6}(4,2) = a_2(1,2,3,4) = |s(5,3)|, with the Stirling numbers of the first kind s(n,m) = A048994(n,m) was used.
		

Crossrefs

Formula

a(n,m) = [x^m](Ge(n,x)*Product_{j=1..2*n} (1 - j*x/(n*x))), with the o.g.f. Ge(n,x) of the sequence a(k,2*n) := Sum_{j=1..2*n} (-1)^j * j^k. See a comment above.
a(n,m) = (1/n)*(-1)^m*Sum_{i=1..n} S_{2*i-1,2*i}(2*(n-1),m), n >= 1, with the (i,j)-family of number triangles S_{i,j}(n,k) defined in a comment to A196845.

A196848 Coefficient array of numerator polynomials of the ordinary generating functions for the alternating sums of powers for the numbers 1,2,...,2*n+1.

Original entry on oeis.org

1, 1, -4, 5, 1, -12, 55, -114, 94, 1, -24, 238, -1248, 3661, -5736, 3828, 1, -40, 690, -6700, 40053, -151060, 351800, -465000, 270576, 1, -60, 1595, -24720, 247203, -1665900, 7660565, -23745720, 47560876, -55805520, 29400480, 1, -84, 3185, -72030, 1081353, -11344872, 85234175, -461800710, 1790256286, -4843901664, 8693117160, -9320129280, 4546558080
Offset: 0

Views

Author

Wolfdieter Lang, Oct 27 2011

Keywords

Comments

The row length sequence of this array is A005408(n), n>=0: 1,3,5,7,...
This is the array for the numerator polynomials of the o.g.f. of alternating sums of powers of the first 2*n+1 positive integers.
The corresponding array for the first 2*n positive integers is found in A196847.
The obvious e.g.f. of a(k,2*n+1) := Sum_{j=1..2*n+1} (-1)^(j+1) * j^k is go(n,x) := Sum_{k>=0} a(k,2*n+1)*(x^k)/k! = Sum_{j=1..2*n+1} (-1)^(j+1) * exp(j*x) = exp(x)*(exp((2*n+1)*x) + 1)/(exp(x) + 1).
Via Laplace transformation (see the link under A196837, addendum) one finds the corresponding o.g.f.: Go(n,x) = Po(n,x)/Product_{j=1..2*n+1} (1 - j*x) with the numerator polynomial Po(n,x) = Sum_{m=0..2*n} a(n,m)*x^m.

Examples

			n\m 0   1   2     3     4       5      6       7       8
0:  1
1:  1  -4   5
2:  1 -12  55  -114    94
3:  1 -24 238 -1248  3661   -5736   3828
4:  1 -40 690 -6700 40053 -151060 351800 -465000, 270576
...
The o.g.f. for the sequence a(k,5) := (1^k - 2^k + 3^k - 4^k + 5^k) = A198628(k), k >= 0, (n=2) is Go(2,x) = (1 - 12*x + 55*x^2 - 114*x^3 + 94*x^4)/Product_{j=1..5} (1-j*x).
a(3,2) = S_{1,2}(5,1) + S_{3,4}(5,1) + S_{5,6}(5,1) + |s(7,5)| = A196845(5,1) + A196846(5,1) + 17 + |s(7,5)| = 25+21+17+175 = 238. Here S_{5,6}(5,1) = 1+2+3+4+7 = 17 was used.
		

Crossrefs

Formula

a(n,m) = [x^m](Go(n,x)*Product_{j=1..2*n+1} (1-j*x)), with the o.g.f. Go(n,x) of the sequence a(k,2*n+1) := Sum_{j=1..2*n+1} (-1)^(j+1) * j^k. See a comment above.
a(n,0) = 1, n >= 0, and a(n,m) = (-1)^m*((Sum_{i=1..n} S_{2*i-1,2*i}(2*(n-1),m)) + |s(2*n+1,2n+1-m)|), n >= 0, m = 1..2*n, with the (i,j)-family of number triangles S_{i,j}(n,k) defined in a comment on A196845, and the Stirling numbers of the first kind s(n,m) = A048994(n,m).

A196846 Table of elementary symmetric functions a_k(1,2,5,6,...,n+2) (no 3,4).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 14, 65, 112, 60, 1, 21, 163, 567, 844, 420, 1, 29, 331, 1871, 5380, 7172, 3360, 1, 38, 592, 4850, 22219, 55592, 67908, 30240, 1, 48, 972, 10770, 70719, 277782, 623828, 709320, 302400, 1, 59, 1500, 21462, 189189, 1055691, 3679430, 7571428, 8104920, 3326400
Offset: 0

Views

Author

Wolfdieter Lang, Oct 27 2011

Keywords

Comments

For the symmetric functions a_k see a comment in A196841.
The definition of the family of number triangles
S_{i,j}(n,k),n>=k>=0, 1<=i
A196845. The present triangle is S_{3,4}(n,k) (no 3 and 4
admitted). The first three lines coincide with those of
triangle A094638(n+1,k+1) which tabulates a_k(1,2,...,n).

Examples

			n\k   0    1    2     3      4      5      6       7 ...
0:    1
1:    1    1
2:    1    3    2
3:    1    8   17    10
4:    1   14   65   112     60
5:    1   21  163   567    844    420
6:    1   29  331  1871   5380   7172   3360
7:    1   38  592  4850  22219  55592  67908   30240
...
a(2,2)=a_2(1,2)=A094638(3,3)=1*2=2.
a(2,2) = |s(3,1)| = 2.
a(4,2) = a_2(1,2,5,6) = 1*2+1*5+1*6+2*5+2*6+5*6 = 65.
a(4,2) = 1*(|s(7,5)| - (3*S_3(5,1) + 4*S_4(5,1))) +
3*4*(|s(7,7)| -(3*0 + 4*0)) = 1*(175 -(3*18 + 4*17))
+ 12*1 = 65.
		

Crossrefs

Cf. A094638 (a_k triangle), A196845 (no 1,2 triangle), A196842 (no 3), A196843 (no 4).

Formula

a(n,k) = 0 if n=3; k=0..n, with the elementary symmetric functions a_k (see the comment above).
a(n,k) = |s(n+1,n+1-k)| for 0<=n<3,
a(n,k) = sum(((3*4)^m)*(|s(n+3,n+3-k+2*m)| - (3*S_3(n+1,k-1-2*m) + 4*S_4(n+1,k-1-2*m))),m = 0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_3(n,k)= A196842(n,k) and S_4(n,k)= A196843(n,k) (for negative k one puts the entries of these triangles to 0).
Showing 1-3 of 3 results.