A196847
Coefficient table of numerator polynomials of the ordinary generating function for the alternating power sums for the numbers 1,2,...,2*n.
Original entry on oeis.org
1, 1, -5, 7, 1, -14, 73, -168, 148, 1, -27, 298, -1719, 5473, -9162, 6396, 1, -44, 830, -8756, 56453, -227744, 562060, -778800, 468576, 1, -65, 1865, -31070, 332463, -2385305, 11612795, -37875240, 79269676, -96420480, 52148160, 1, -90, 3647, -87900, 140202
Offset: 1
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: 1 -5 7
3: 1 -14 73 -168 148
4: 1 -27 298 -1719 5473 -9162 6396
5: 1 -44 830 -8756 56453 -227744 562060 -778800 468576
...
The o.g.f. for the sequence a(k,4) := -(1^k - 2^k + 3^k -4^k) = 2*A053154(k), k>=0, (n=2) is Ge(2,x) = 2*x*(1-5*x+7*x^2)/Product_{j=1..4} (1 - j*x).
a(3,2) = (S_{1,2}(4,2) + S_{3,4}(4,2) + S_{5,6}(4,2))/3 = (A196845(4,2) + A196846(4,2) + |s(5,3)|)/3 = (119+65+35)/3 = 73. Here S_{5,6}(4,2) = a_2(1,2,3,4) = |s(5,3)|, with the Stirling numbers of the first kind s(n,m) = A048994(n,m) was used.
A198628
Alternating sums of powers for 1,2,3,4 and 5.
Original entry on oeis.org
1, 3, 15, 81, 435, 2313, 12195, 63801, 331395, 1710153, 8775075, 44808921, 227890755, 1155180393, 5839846755, 29458152441, 148335904515, 745888593033, 3746364947235, 18799770158361, 94271405748675, 472449569948073, 2366624981836515, 11850654345690681, 59323452211439235
Offset: 0
-
A198628 := proc(n)
3^n-4^n+1-2^n+5^n ;
end proc:
seq(A198628(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
LinearRecurrence[{15,-85,225,-274,120},{1,3,15,81,435},30] (* Harvey P. Dale, Dec 30 2024 *)
A198629
Alternating sums of powers of 1,2,...,6, divided by 3.
Original entry on oeis.org
0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0
-
A198629 := proc(n)
(-3^n+4^n-1+2^n-5^n+6^n)/3 ;
end proc:
seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)
A198630
Alternating sums of powers of 1,2,...,7.
Original entry on oeis.org
1, 4, 28, 208, 1540, 11344, 83188, 607408, 4416580, 31986064, 230784148, 1659338608, 11892395620, 84983496784, 605698755508, 4306834677808, 30560156566660
Offset: 0
a(2) = 1^2-2^2+3^2-4^2+5^2-6^2+7^2 = 28.
-
A198630 := proc(n)
3^n-4^n+1-2^n+5^n-6^n+7^n ;
end proc:
seq(A198630(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 5040,-13068,13132,-6769,1960,-322,28]^n*[1;4;28;208;1540;11344;83188])[1,1] \\ Charles R Greathouse IV, Jul 06 2017
Showing 1-4 of 4 results.
Comments