A053154
Number of 2-element intersecting families (with not necessarily distinct sets) of an n-element set.
Original entry on oeis.org
0, 1, 5, 22, 95, 406, 1715, 7162, 29615, 121486, 495275, 2009602, 8124935, 32761366, 131834435, 529712842, 2125993055, 8525430046, 34166159195, 136858084882, 548012945975, 2193794127526, 8780404589555, 35137304693722
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(4^n-3^n+2^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Oct 06 2017
-
Table[(4^n-3^n+2^n-1)/2, {n,1,30}] (* Clark Kimberling, Mar 12 2012 *)
CoefficientList[Series[x (1 - 5 x + 7 x^2) / ((1 - x) (1 - 4 x) (1 - 3 x) (1 - 2 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n) = (4^n-3^n+2^n-1)/2; \\ Michel Marcus, Nov 30 2015
A196848
Coefficient array of numerator polynomials of the ordinary generating functions for the alternating sums of powers for the numbers 1,2,...,2*n+1.
Original entry on oeis.org
1, 1, -4, 5, 1, -12, 55, -114, 94, 1, -24, 238, -1248, 3661, -5736, 3828, 1, -40, 690, -6700, 40053, -151060, 351800, -465000, 270576, 1, -60, 1595, -24720, 247203, -1665900, 7660565, -23745720, 47560876, -55805520, 29400480, 1, -84, 3185, -72030, 1081353, -11344872, 85234175, -461800710, 1790256286, -4843901664, 8693117160, -9320129280, 4546558080
Offset: 0
n\m 0 1 2 3 4 5 6 7 8
0: 1
1: 1 -4 5
2: 1 -12 55 -114 94
3: 1 -24 238 -1248 3661 -5736 3828
4: 1 -40 690 -6700 40053 -151060 351800 -465000, 270576
...
The o.g.f. for the sequence a(k,5) := (1^k - 2^k + 3^k - 4^k + 5^k) = A198628(k), k >= 0, (n=2) is Go(2,x) = (1 - 12*x + 55*x^2 - 114*x^3 + 94*x^4)/Product_{j=1..5} (1-j*x).
a(3,2) = S_{1,2}(5,1) + S_{3,4}(5,1) + S_{5,6}(5,1) + |s(7,5)| = A196845(5,1) + A196846(5,1) + 17 + |s(7,5)| = 25+21+17+175 = 238. Here S_{5,6}(5,1) = 1+2+3+4+7 = 17 was used.
A198628
Alternating sums of powers for 1,2,3,4 and 5.
Original entry on oeis.org
1, 3, 15, 81, 435, 2313, 12195, 63801, 331395, 1710153, 8775075, 44808921, 227890755, 1155180393, 5839846755, 29458152441, 148335904515, 745888593033, 3746364947235, 18799770158361, 94271405748675, 472449569948073, 2366624981836515, 11850654345690681, 59323452211439235
Offset: 0
-
A198628 := proc(n)
3^n-4^n+1-2^n+5^n ;
end proc:
seq(A198628(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
LinearRecurrence[{15,-85,225,-274,120},{1,3,15,81,435},30] (* Harvey P. Dale, Dec 30 2024 *)
A198629
Alternating sums of powers of 1,2,...,6, divided by 3.
Original entry on oeis.org
0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0
-
A198629 := proc(n)
(-3^n+4^n-1+2^n-5^n+6^n)/3 ;
end proc:
seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)
A198630
Alternating sums of powers of 1,2,...,7.
Original entry on oeis.org
1, 4, 28, 208, 1540, 11344, 83188, 607408, 4416580, 31986064, 230784148, 1659338608, 11892395620, 84983496784, 605698755508, 4306834677808, 30560156566660
Offset: 0
a(2) = 1^2-2^2+3^2-4^2+5^2-6^2+7^2 = 28.
-
A198630 := proc(n)
3^n-4^n+1-2^n+5^n-6^n+7^n ;
end proc:
seq(A198630(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 5040,-13068,13132,-6769,1960,-322,28]^n*[1;4;28;208;1540;11344;83188])[1,1] \\ Charles R Greathouse IV, Jul 06 2017
A376117
Irregular triangle of numerator polynomial coefficients of C({1..n},x), T(n,k) for n >= 0 and k >= A000217(n).
Original entry on oeis.org
1, 1, -2, -1, -6, 0, 10, 16, 4, -11, -17, -12, -5, -1, -24, 84, -60, 30, -144, -48, 104, 186, 268, -12, -240, -436, -348, -46, 262, 444, 391, 199, -23, -166, -207, -172, -109, -55, -21, -6, -1, 120, -1200, 4560, -7740, 5064, -2472, 9768, -19152, 35004, -39408
Offset: 0
For row n = 2, C({1,2},x) = (-2*x^3 - x^4)/(1 + x + 2*x^2 - x^3 - x^4).
Triangle begins
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=0 1;
n=1 . 1;
n=2 . . . -2, -1;
n=3 . . . . . . -6, 0, 10, 16, 4, -11, -17, -12, -5, -1;
-
C_x(s)={my( g=if(#s <1, 1, sum(i=1, #s, C_x(s[^i]) * x^(s[i]) )/(1-sum(i=1, #s, x^(s[i]))))); return(g)}
A376117_row(n)={my(t=n*(n+1)/2, c=C_x([1..n]), d=poldegree(numerator(c))-t, z=vector(d+1)); for(k=0,d,z[k+1]=polcoeff(numerator(c),k+t)); z}
Showing 1-6 of 6 results.
Comments