A083324
a(n) = 4^n - 3^n + 2^n.
Original entry on oeis.org
1, 3, 11, 45, 191, 813, 3431, 14325, 59231, 242973, 990551, 4019205, 16249871, 65522733, 263668871, 1059425685, 4251986111, 17050860093, 68332318391, 273716169765, 1096025891951, 4387588255053, 17560809179111, 70274609387445, 281192563951391, 1125052651787613
Offset: 0
A196847
Coefficient table of numerator polynomials of the ordinary generating function for the alternating power sums for the numbers 1,2,...,2*n.
Original entry on oeis.org
1, 1, -5, 7, 1, -14, 73, -168, 148, 1, -27, 298, -1719, 5473, -9162, 6396, 1, -44, 830, -8756, 56453, -227744, 562060, -778800, 468576, 1, -65, 1865, -31070, 332463, -2385305, 11612795, -37875240, 79269676, -96420480, 52148160, 1, -90, 3647, -87900, 140202
Offset: 1
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: 1 -5 7
3: 1 -14 73 -168 148
4: 1 -27 298 -1719 5473 -9162 6396
5: 1 -44 830 -8756 56453 -227744 562060 -778800 468576
...
The o.g.f. for the sequence a(k,4) := -(1^k - 2^k + 3^k -4^k) = 2*A053154(k), k>=0, (n=2) is Ge(2,x) = 2*x*(1-5*x+7*x^2)/Product_{j=1..4} (1 - j*x).
a(3,2) = (S_{1,2}(4,2) + S_{3,4}(4,2) + S_{5,6}(4,2))/3 = (A196845(4,2) + A196846(4,2) + |s(5,3)|)/3 = (119+65+35)/3 = 73. Here S_{5,6}(4,2) = a_2(1,2,3,4) = |s(5,3)|, with the Stirling numbers of the first kind s(n,m) = A048994(n,m) was used.
A198629
Alternating sums of powers of 1,2,...,6, divided by 3.
Original entry on oeis.org
0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0
-
A198629 := proc(n)
(-3^n+4^n-1+2^n-5^n+6^n)/3 ;
end proc:
seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)
A052389
Number of 4-element intersecting families (with not necessarily distinct sets) of an n-element set.
Original entry on oeis.org
0, 1, 9, 95, 1286, 20681, 360964, 6452825, 114920766, 2018035121, 34864971944, 593281456505, 9965368457746, 165615181710161, 2728984827320124, 44665923097267385, 727216852411490726, 11791672548220250801
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..825
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (83, -3052, 65670, -919413, 8804499, -58966886, 277278100, -904270136, 1982352768, -2749917312, 2142305280, -696729600).
-
[(16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
A083327
a(n) = (5^n - 4^n + 3^n - 2^n)/2.
Original entry on oeis.org
0, 1, 7, 40, 217, 1156, 6097, 31900, 165697, 855076, 4387537, 22404460, 113945377, 577590196, 2919923377, 14729076220, 74167952257, 372944296516, 1873182473617, 9399885079180, 47135702874337, 236224784974036
Offset: 0
-
Table[(5^n-4^n+3^n-2^n)/2,{n,0,30}] (* or *) LinearRecurrence[{14,-71,154,-120},{0,1,7,40},30] (* Harvey P. Dale, Apr 04 2013 *)
A198630
Alternating sums of powers of 1,2,...,7.
Original entry on oeis.org
1, 4, 28, 208, 1540, 11344, 83188, 607408, 4416580, 31986064, 230784148, 1659338608, 11892395620, 84983496784, 605698755508, 4306834677808, 30560156566660
Offset: 0
a(2) = 1^2-2^2+3^2-4^2+5^2-6^2+7^2 = 28.
-
A198630 := proc(n)
3^n-4^n+1-2^n+5^n-6^n+7^n ;
end proc:
seq(A198630(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 5040,-13068,13132,-6769,1960,-322,28]^n*[1;4;28;208;1540;11344;83188])[1,1] \\ Charles R Greathouse IV, Jul 06 2017
Showing 1-6 of 6 results.
Comments