cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196846 Table of elementary symmetric functions a_k(1,2,5,6,...,n+2) (no 3,4).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 14, 65, 112, 60, 1, 21, 163, 567, 844, 420, 1, 29, 331, 1871, 5380, 7172, 3360, 1, 38, 592, 4850, 22219, 55592, 67908, 30240, 1, 48, 972, 10770, 70719, 277782, 623828, 709320, 302400, 1, 59, 1500, 21462, 189189, 1055691, 3679430, 7571428, 8104920, 3326400
Offset: 0

Views

Author

Wolfdieter Lang, Oct 27 2011

Keywords

Comments

For the symmetric functions a_k see a comment in A196841.
The definition of the family of number triangles
S_{i,j}(n,k),n>=k>=0, 1<=i
A196845. The present triangle is S_{3,4}(n,k) (no 3 and 4
admitted). The first three lines coincide with those of
triangle A094638(n+1,k+1) which tabulates a_k(1,2,...,n).

Examples

			n\k   0    1    2     3      4      5      6       7 ...
0:    1
1:    1    1
2:    1    3    2
3:    1    8   17    10
4:    1   14   65   112     60
5:    1   21  163   567    844    420
6:    1   29  331  1871   5380   7172   3360
7:    1   38  592  4850  22219  55592  67908   30240
...
a(2,2)=a_2(1,2)=A094638(3,3)=1*2=2.
a(2,2) = |s(3,1)| = 2.
a(4,2) = a_2(1,2,5,6) = 1*2+1*5+1*6+2*5+2*6+5*6 = 65.
a(4,2) = 1*(|s(7,5)| - (3*S_3(5,1) + 4*S_4(5,1))) +
3*4*(|s(7,7)| -(3*0 + 4*0)) = 1*(175 -(3*18 + 4*17))
+ 12*1 = 65.
		

Crossrefs

Cf. A094638 (a_k triangle), A196845 (no 1,2 triangle), A196842 (no 3), A196843 (no 4).

Formula

a(n,k) = 0 if n=3; k=0..n, with the elementary symmetric functions a_k (see the comment above).
a(n,k) = |s(n+1,n+1-k)| for 0<=n<3,
a(n,k) = sum(((3*4)^m)*(|s(n+3,n+3-k+2*m)| - (3*S_3(n+1,k-1-2*m) + 4*S_4(n+1,k-1-2*m))),m = 0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_3(n,k)= A196842(n,k) and S_4(n,k)= A196843(n,k) (for negative k one puts the entries of these triangles to 0).