cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196867 G.f. A(x) satisfies: A(x)^-4 + A(-x)^-4 = 2 and A(x)^4 - A(-x)^4 = 32*x.

Original entry on oeis.org

1, 4, 40, -544, -14240, 240512, 7905536, -144081920, -5248825856, 99459618816, 3842132979712, -74547398033408, -2991092285194240, 58965437254402048, 2429529032173420544, -48445417122664284160, -2035619492638819483648, 40941665274780773253120
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2011

Keywords

Examples

			 G.f.: A(x) = 1 + 4*x + 40*x^2 - 544*x^3 - 14240*x^4 + 240512*x^5 +...
where
A(x)^4 = 1 + 16*x + 256*x^2 - 65536*x^4 + 33554432*x^6 +...
A(x)^-4 = 1 - 16*x + 4096*x^3 - 2097152*x^5 + 1342177280*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(((sqrt(1+4*4^4*X^2) + 2*4^2*x)*(sqrt(1+4*4^4*X^2) + 1)/2 )^(1/8),n)}

Formula

G.f.: ( (sqrt(1+4*4^4*x^2) + 2*4^2*x)*(sqrt(1+4*4^4*x^2) + 1)/2 )^(1/8).