A196880 Number of partitions of n^2 into powers of 2.
1, 1, 4, 10, 36, 94, 284, 692, 1828, 4124, 9828, 20798, 45564, 91018, 186788, 355906, 692004, 1264678, 2347716, 4138358, 7389572, 12625938, 21804900, 36243644, 60777212, 98547380, 160987868, 255297602, 407492292, 633469718, 990388828, 1512185428, 2320518948
Offset: 0
Keywords
Examples
a(3) = 10, because there are 10 partitions of 3^2=9 into powers of 2: [1,8], [1,4,4], [1,2,2,4], [1,1,1,2,4], [1,1,1,1,1,4], [1,2,2,2,2], [1,1,1,2,2,2], [1,1,1,1,1,2,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Column k=2 of A196879.
Formula
a(n) = [x^(n^2)] 1/Product_{j>=0}(1-x^(2^j)).