A196889 Number of partitions of 2^n into powers of n.
1, 1, 4, 3, 6, 9, 16, 36, 85, 210, 586, 1914, 6930, 28178, 125440, 603350, 3083410, 17362239, 112403052, 820563290, 6632950912, 58209665965, 544071039000, 5353538904357, 58523908575096, 730174875609318, 10274727352967428, 159586345364505768
Offset: 0
Keywords
Examples
a(3) = 3 because there are 3 partitions of 2^3=8 into powers of 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Row n=2 of A196879.
Formula
a(n) = [x^(2^n)] 1/Product_{j>=0}(1-x^(n^j)).