A196890 Number of partitions of 3^n into powers of n.
1, 1, 10, 23, 72, 335, 2220, 19166, 217862, 3428059, 71688050, 1884401480, 63363038340, 2929516409504, 178211319638172, 13290584617658383, 1240111930777216192, 158642776309162956097, 26642849845285577276244, 5432337767302682299726906
Offset: 0
Keywords
Examples
a(2) = 10 because there are 10 partitions of 3^2=9 into powers of 2: [1,8], [1,4,4], [1,2,2,4], [1,1,1,2,4], [1,1,1,1,1,4], [1,2,2,2,2], [1,1,1,2,2,2], [1,1,1,1,1,2,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Row n=3 of A196879.
Formula
a(n) = [x^(3^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.